03.04.2013 Views

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Fig. 1: Isoseismal Map (MSK) of <strong>the</strong> 1504 AD Carmona<br />

Earthquake based on historical descriptions <strong>and</strong> coseismic<br />

secondary effects illustrat<strong>in</strong>g categories of <strong>the</strong> ESI‐2007 Scale<br />

(ground cracks, slope movements, liquefaction processes,<br />

anomalous waves <strong>and</strong> flood<strong>in</strong>g <strong>in</strong> rivers <strong>and</strong> temporary turbidity<br />

changes <strong>in</strong> wells) <strong>and</strong> sites with archaeoseismic damage<br />

(IGCP567 Logo). Epicentral location parameters (red star) <strong>and</strong><br />

error radius are from FAUST PROJECT: http://faustproject.com.<br />

Yellow stars <strong>in</strong>dicate <strong>the</strong> macroseismic location of o<strong>the</strong>r historic<br />

moderate events (VI‐VII MSK) Colours of localities <strong>in</strong>dicate <strong>the</strong><br />

recorded MSK <strong>in</strong>tensity. White dots <strong>in</strong>dicate no data. The<br />

del<strong>in</strong>eation of isoseismal l<strong>in</strong>es SE of Carmona is tentative (no data<br />

available for this zone)<br />

The 1504 AD Carmona Event can be considered a seismic<br />

sequence which lasted almost one month <strong>and</strong> a half,<br />

when a ma<strong>in</strong> aftershock (V EMS) caused damage <strong>in</strong> <strong>the</strong><br />

previously affected macroseismic area. Before, <strong>in</strong> 1466 AD<br />

a previous strong event (VIII EMS) caused significant<br />

damage around <strong>the</strong> same area of <strong>the</strong> Guadalquivir valley,<br />

but especially <strong>in</strong> <strong>the</strong> cities of Carmona <strong>and</strong> Sevilla (Galbis,<br />

1932). The seismicity of <strong>the</strong> zone records about 30 seismic<br />

events for <strong>the</strong> period 900 – 1900 AD along <strong>the</strong><br />

Guadalquivir Valley follow<strong>in</strong>g <strong>the</strong> suspect Guadalquivir<br />

Fault. There are four recorded historical macroseismic<br />

areas <strong>in</strong> Sevilla (VIII EMS), Carmona (VIII‐IX EMS), Córdoba<br />

(V‐VI EMS) <strong>and</strong> Andújar (VIII‐IX EMS).<br />

EFFECTS ON NATURAL ENVIRONMENT<br />

Coseismic ground effects produced by <strong>the</strong> earthquake can<br />

be classified as secondary effects of <strong>the</strong> ESI‐2007 Scale<br />

(Michetti et al., 2007) <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> categories of Slope<br />

Movements <strong>and</strong> large ground cracks (Los Alcores Scarp<br />

<strong>and</strong> Carmona City, about 3 to 10 km away). Liquefactions<br />

were widely reported with<strong>in</strong> <strong>the</strong> Guadalquivir flood pla<strong>in</strong><br />

between Sevilla <strong>and</strong> Palma del Rio (45 km away).<br />

Anomalous waves <strong>in</strong> <strong>the</strong> Guadalquivir River, were only<br />

reported <strong>in</strong> Sevilla, 23 km away from <strong>the</strong> epicentre.<br />

F<strong>in</strong>ally, with<strong>in</strong> <strong>the</strong> category of Hydrological changes,<br />

temporal variation <strong>in</strong> <strong>the</strong> turbidity of wells were reported<br />

on two distant localities (Amadén de la Plata y Cazalla),<br />

located <strong>in</strong> <strong>the</strong> palaeozoic basement on <strong>the</strong> NW marg<strong>in</strong> of<br />

1 st INQUA‐IGCP‐567 International Workshop on Earthquake Archeology <strong>and</strong> Paleoseismology<br />

140<br />

<strong>the</strong> Guadalquivir Depression, about 60 to 70 km away of<br />

<strong>the</strong> epicentral area. The isoseismal map of figure 1 is not a<br />

conventional one due to <strong>the</strong> scarcity of <strong>the</strong> macroseismic<br />

data. It only illustrates <strong>the</strong>oretical MSK‐ESI2007 <strong>in</strong>tensity<br />

zones at <strong>the</strong> macroseismic area <strong>in</strong> relation to <strong>the</strong><br />

topography (scarps) <strong>and</strong> <strong>the</strong> geology of <strong>the</strong> area<br />

(Guadalquivir flood pla<strong>in</strong>) where ma<strong>in</strong> ground coseismic<br />

effects were recorded.<br />

Slope Movements <strong>and</strong> Rockfalls.<br />

These ground failures are ma<strong>in</strong>ly related with Los Alcores<br />

Scarp where <strong>the</strong> Carmona City is founded. This scarpment<br />

is a NW‐SE trend<strong>in</strong>g active geomorphic feature with<strong>in</strong> <strong>the</strong><br />

sou<strong>the</strong>rn marg<strong>in</strong> of <strong>the</strong> Guadalquivir river valley, subject<br />

to relevant rockfalls, large l<strong>and</strong>slides trigger<strong>in</strong>g<br />

differential settlement of build<strong>in</strong>gs (Rodríguez Vidal <strong>and</strong><br />

González Diez, 1987; Serrat <strong>and</strong> Ruíz; 1988; Baena, 1993).<br />

Free face of <strong>the</strong> scarp develops <strong>in</strong> a 30 to 70 m thick<br />

calcarenitic unit, rest<strong>in</strong>g upon a thicker marly mess<strong>in</strong>ian<br />

sequence <strong>and</strong> plastic olisthostromic sequences com<strong>in</strong>g<br />

from <strong>the</strong> Betic Cordillera front located to <strong>the</strong> SE. The<br />

Palaeozoic substratum is about 1000 metres depth<br />

beneath <strong>the</strong> City of Carmona, whilst <strong>in</strong> <strong>the</strong> opposite<br />

marg<strong>in</strong> of <strong>the</strong> Guadalquivir valley, about 30 km NW, <strong>the</strong><br />

metamorphic Palaeozoic materials outcrop at <strong>the</strong> surface<br />

(Fig. 1).<br />

Fig. 2: Blocks of <strong>the</strong> L<strong>and</strong>slide triggered by <strong>the</strong> 1504 AD Carmona<br />

Earthquake affect<strong>in</strong>g to <strong>the</strong> ancient Arab Castle (Orig<strong>in</strong>al Photo<br />

Hernández‐Pacheco, 1956)<br />

Los Alcores Scarp is 140 m high <strong>in</strong> Carmona to about 40m<br />

high <strong>in</strong> Alcalá de Guadaira (25 km SE) where <strong>the</strong> scarp<br />

progressively dies‐out. The scarp is a l<strong>in</strong>eal geomorphic<br />

feature stepped by orthogonal NW‐SE <strong>and</strong> NNE‐SSW<br />

faults affect<strong>in</strong>g to <strong>the</strong> Late Neogene calcarenites (Baena,<br />

1993; Serrat <strong>and</strong> Ruíz, 1988). Fault<strong>in</strong>g give place to<br />

relevant altitud<strong>in</strong>al changes of about 10‐5 m on <strong>the</strong> scarp<br />

elevation. However, most of <strong>the</strong>se <strong>in</strong>terven<strong>in</strong>g faults have<br />

been <strong>the</strong> preferential place for gully development from<br />

<strong>the</strong> Middle‐Late Pleistocene, so <strong>the</strong>ir trace can only be<br />

del<strong>in</strong>eated by means of <strong>the</strong> geomorphic anomalies<br />

recorded at <strong>the</strong> top of <strong>the</strong> scarp. Large l<strong>and</strong>slide events<br />

were recorded along this scarp. The ma<strong>in</strong> one affected to<br />

<strong>the</strong> Alcázar (Arab Castle) of Carmona as documented by<br />

Bonsor (1918). Maximum vertical displacement of <strong>the</strong><br />

slide was of 1.8 m with associated left lateral<br />

displacements of a maximum of 1.4 m. The larger fracture

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!