03.04.2013 Views

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1 st INQUA‐IGCP‐567 International Workshop on Earthquake Archaeology <strong>and</strong> <strong>Palaeoseismology</strong><br />

TERRESTRIAL LASER SCANNING OF AN ACTIVE FAULT IN GREECE: KAPARELLI<br />

FAULT<br />

T. Wiatr (1), K. Reicherter (1) <strong>and</strong> I. Papanikolaou (2).<br />

(1) Neotectonics <strong>and</strong> Natural Hazards, RWTH Aachen. Lochnerstr. 4‐20. 52056 Aachen. GERMANY.<br />

t.wiatr@nug.rwth‐aachen.de, k.reicherter@nug.rwth‐aachen.de<br />

(2) Lab. of M<strong>in</strong>eralogy & Geology, Department of Sciences, Agricultural University of A<strong>the</strong>ns. 75 Iera Odos Str. 11855 A<strong>the</strong>ns. GREECE.<br />

i.papanikolaou@ucl.ac.uk<br />

Abstract: The terrestrial laser scanner (TLS) has been used for <strong>the</strong> <strong>in</strong>vestigation of escarpments at different sites <strong>in</strong> Greece. First measurements<br />

have been conducted <strong>in</strong> spr<strong>in</strong>g 2009. In <strong>the</strong> future, semi‐annual laser scann<strong>in</strong>g will provide <strong>the</strong> possibility to monitor <strong>the</strong> fault plane <strong>and</strong> to<br />

identify <strong>the</strong> relative ages of <strong>the</strong> different earthquake events. The data acquisition with <strong>the</strong> TLS method <strong>and</strong> <strong>the</strong> high‐resolution spatial surface<br />

analysis can help to improve data quality, to provide a more accurate prediction. Scientific objectives are <strong>the</strong> analysis of rock surface<br />

roughness <strong>in</strong> different scales <strong>and</strong> types which is of <strong>in</strong>terest to determ<strong>in</strong>e relative age of <strong>the</strong> slip. Fur<strong>the</strong>rmore <strong>the</strong> <strong>in</strong>tensity of reflexivity of <strong>the</strong><br />

scarp surface can semi‐automatically help to identify different wea<strong>the</strong>r<strong>in</strong>g stages. Additionally, geodetic measurements with compass <strong>and</strong> GPS<br />

are carried out to cross‐validate <strong>the</strong> quality of <strong>the</strong> TLS po<strong>in</strong>t cloud data. In this paper we want to present <strong>the</strong> prelim<strong>in</strong>ary results of <strong>the</strong><br />

Kaparelli fault (central Greece) obta<strong>in</strong>ed <strong>the</strong> campaign 2009.<br />

Key words: Greece, scarp, Kaparelli fault, LiDAR<br />

INTRODUCTION<br />

Dur<strong>in</strong>g <strong>the</strong> field kamagne <strong>in</strong> Greece (April 2009) with <strong>the</strong><br />

terrestrial laser scann<strong>in</strong>g system (TLS) <strong>the</strong> focus was on<br />

<strong>the</strong> fault escarpments. These are natural exposed surfaces<br />

<strong>and</strong> give evidence of earthquakes. The concentration lies<br />

on fault scarps <strong>in</strong> neotectonics active zones <strong>in</strong> Greece. The<br />

fault plane often extends to <strong>the</strong> Earth’s surface to<br />

produce ground cracks dur<strong>in</strong>g earthquakes along <strong>the</strong> fault<br />

l<strong>in</strong>e or <strong>the</strong> active segment <strong>and</strong> leaves a dist<strong>in</strong>ctive, step‐<br />

like expression <strong>in</strong> <strong>the</strong> l<strong>and</strong>scape named fault scarp.<br />

Exhumation of <strong>the</strong> fault plane due to coseismic slip<br />

exposes <strong>the</strong> fault surface to differential wea<strong>the</strong>r<strong>in</strong>g <strong>and</strong><br />

probably to changes <strong>in</strong> surface roughness. Ma<strong>in</strong> aims of<br />

<strong>the</strong> <strong>in</strong>vestigations are to analyze <strong>the</strong> tectonic<br />

geomorphology <strong>and</strong> paleoseismology of known active<br />

faults that display post‐glacial fault scarps with ground<br />

based LiDAR system to reconstruct <strong>the</strong> fault<strong>in</strong>g history<br />

along surface‐ruptur<strong>in</strong>g scarps, <strong>and</strong> to test <strong>the</strong> potential<br />

of selected locations to calibrate <strong>the</strong> roughness‐<strong>in</strong>dex<br />

method for active faults. The hypo<strong>the</strong>sis of our<br />

<strong>in</strong>vestigation on fault scarps shown <strong>in</strong> Fig. 1 (based on<br />

Benedetti et al. 2002). However, <strong>the</strong> first step for <strong>the</strong><br />

analysis with TLS on this escarpment is to generate a<br />

HRDEM (High Resolution Digital Elevation Model) of <strong>the</strong><br />

surface. For our case we need a 3‐D approach to<br />

characterize <strong>the</strong> different coseismic slip events by <strong>the</strong><br />

spatial distribution of <strong>the</strong> surface roughness from a very<br />

dense 3‐D po<strong>in</strong>t cloud data. The spatial resolution should<br />

be <strong>in</strong> <strong>the</strong> range of a few millimeters for <strong>the</strong> follow<strong>in</strong>g<br />

analysis. The ma<strong>in</strong> analytical targets are <strong>the</strong> roughness<br />

<strong>and</strong> <strong>the</strong> backscattered <strong>in</strong>tensity of <strong>the</strong> escarpment<br />

surface. Primary goals are to characterize slip planes, jo<strong>in</strong>t<br />

orientation <strong>and</strong> spac<strong>in</strong>g, <strong>the</strong> surface roughness, <strong>the</strong> dip<br />

directions <strong>and</strong> orientation <strong>and</strong> <strong>in</strong>tensity distributions. Tse<br />

<strong>and</strong> Curden (1979), Kulatilake et al. (1999), Fard<strong>in</strong> et al.<br />

(2001, 2004), Rahman et al. (2006), Kokkalas er al. (2007a)<br />

169<br />

or Sagy et al. (2007) discussed different approaches for<br />

calculation of <strong>the</strong> roughness of surfaces.<br />

Fig. 1: Schematic diagram of <strong>the</strong> evolution of fault scarps <strong>and</strong><br />

<strong>the</strong> related roughness (after Benedetti et al., 2002).<br />

KAPARELLI FAULT<br />

The Kaparelli fault is located <strong>in</strong> <strong>the</strong> eastern part of <strong>the</strong><br />

Gulf of Cor<strong>in</strong>th (Fig. 2 <strong>and</strong> 3) <strong>and</strong> is one of <strong>the</strong> most<br />

tectonically active regions <strong>in</strong> Greece (Ganas et al., 2007).<br />

Fig. 2: Geographical overview of Greece <strong>and</strong> <strong>the</strong> location of<br />

<strong>the</strong> Kaparelli <strong>in</strong>vestigation area

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!