03.04.2013 Views

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>in</strong>cision trend of <strong>the</strong> dra<strong>in</strong>age network. Probably, <strong>the</strong><br />

transformation from an aggradational to an <strong>in</strong>cisional<br />

tectonic bas<strong>in</strong> was determ<strong>in</strong>ed by alterations <strong>in</strong> <strong>the</strong><br />

dra<strong>in</strong>age network (i.e. base level drops, captures) that<br />

<strong>in</strong>duced a change from a poorly dra<strong>in</strong>ed bas<strong>in</strong> to a bas<strong>in</strong><br />

effectively dra<strong>in</strong>ed by a high gradient axial river. In <strong>the</strong><br />

absence of chronological <strong>in</strong>formation on <strong>the</strong> alluvial fan<br />

sediments, based on <strong>the</strong>ir geomorphic sett<strong>in</strong>g <strong>and</strong><br />

regional paleogeographic evolution we estimate that may<br />

have a Plio‐Quaternary age.<br />

The alluvial fan deposits <strong>and</strong> surfaces are locally offset by<br />

<strong>in</strong>trabas<strong>in</strong>al faults. The Paleozoic rocks associated with<br />

<strong>the</strong>se faults are commonly strongly crushed <strong>and</strong> <strong>the</strong>ir low<br />

resistance to erosion favours an anomalous development<br />

of badl<strong>and</strong>s. The faults dipp<strong>in</strong>g towards <strong>the</strong> valley<br />

produce downhill‐fac<strong>in</strong>g scarps (fault between Modorra<br />

Fault <strong>and</strong> F7), whereas anti<strong>the</strong>tic faults dipp<strong>in</strong>g towards<br />

<strong>the</strong> bas<strong>in</strong> marg<strong>in</strong>s are expressed as uphill‐fac<strong>in</strong>g scarps<br />

(Fig. 3). A GPR survey carried out across <strong>the</strong> antislope<br />

scarp situated SE of La Aldehuela has allowed us to <strong>in</strong>fer<br />

tilted beds truncated by a steep SW dipp<strong>in</strong>g failure plane<br />

(Fig. 3).<br />

Fig. 3: Uphill fac<strong>in</strong>g scarp produced by an anti<strong>the</strong>tic fault SE of La<br />

Aldehuela. Lds: l<strong>and</strong>slide. GPR survey performed across <strong>the</strong><br />

antislope scarp.<br />

FINAL CONSIDERATIONS<br />

One of <strong>the</strong> ma<strong>in</strong> tasks of geologists <strong>in</strong> seismic hazard<br />

assessment is <strong>the</strong> identification <strong>and</strong> mapp<strong>in</strong>g of recent<br />

faults that might have <strong>the</strong> potential to generate<br />

earthquakes. Based on <strong>the</strong> geomorphological map<br />

presented, some of <strong>the</strong> neotectonic faults that control <strong>the</strong><br />

Río Grío graben are long enough to produce earthquakes<br />

with damag<strong>in</strong>g magnitude (Table 1). However, <strong>the</strong> Río<br />

Grío valley has been <strong>in</strong>terpreted as an erosional fluvial<br />

valley <strong>in</strong> all <strong>the</strong> geological maps published by <strong>the</strong> Spanish<br />

Geological Survey, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> geological cross sections<br />

(Aragonés et al., 1980; Olivé et al., 1983). Additionally, a<br />

detailed geological map recently elaborated for <strong>the</strong><br />

Mularroya Reservoir Project does not represent any of<br />

<strong>the</strong> Plio‐Quaternary faults depicted <strong>in</strong> our<br />

1 st INQUA‐IGCP‐567 International Workshop on Earthquake Archaeology <strong>and</strong> <strong>Palaeoseismology</strong><br />

46<br />

geomorphological map. Consequently, those<br />

cartographic works lead to an underestimation of <strong>the</strong><br />

seismic hazard <strong>in</strong> <strong>the</strong> area. Conversely, <strong>the</strong> 1:1.000.000<br />

Neotectonic Map of Spa<strong>in</strong>, largely derived from<br />

geomorphological maps, depicts schematically <strong>the</strong> Río<br />

Grío valley as a l<strong>in</strong>ear depression bounded by two long<br />

neotectonic faults (Baena et al., 1998). Probably, some of<br />

<strong>the</strong> reasons why <strong>the</strong> neotectonic faults were overlooked<br />

<strong>in</strong> <strong>the</strong> geological maps <strong>in</strong>clude: (1) Most of <strong>the</strong> faults are<br />

not exposed. (2) Their identification need to be based on<br />

geomorphic criteria <strong>and</strong> careful mapp<strong>in</strong>g of Quaternary<br />

sediments, traditionally two secondary aspects <strong>in</strong> <strong>the</strong><br />

elaboration of classical geological maps <strong>in</strong> Spa<strong>in</strong>. This<br />

work suggests that <strong>the</strong> current knowledge on <strong>the</strong><br />

distribution of neotectonic faults <strong>in</strong> some sectors of Spa<strong>in</strong><br />

may be quite limited <strong>and</strong> that geomorphology <strong>and</strong><br />

Quaternary geology should receive more attention when<br />

produc<strong>in</strong>g geological maps <strong>in</strong> areas were young fault<strong>in</strong>g<br />

may occur (McCalp<strong>in</strong>, 2008). This prelim<strong>in</strong>ary work will<br />

serve as <strong>the</strong> basis to conduct geophysical surveys <strong>and</strong><br />

trenches aimed at check<strong>in</strong>g <strong>in</strong>ferred faults <strong>and</strong> unravell<strong>in</strong>g<br />

<strong>the</strong> paleoseismic record of <strong>the</strong> tectonic structures.<br />

References<br />

Álvaro, M. (1991). Tectónica. In: Memoria y Mapa Geológico de<br />

España, E. 1:200.000. Daroca (40). (Gabaldón, V., coord.).<br />

IGME, Madrid, 177‐204.<br />

Aragonés, E., Hernández, A,; Ramírez del Pozo, J., Aguilar, M.J.<br />

(1980). Memoria y Mapa Geológico de España, E. 1:50.000. La<br />

Almunia de Doña Gom<strong>in</strong>a (410). IGME, Madrid, 40 pp.<br />

Baena, J., Moreno, F., Nozal, F., Alfaro, J.A., Barranco, L. (1998).<br />

Mapa Neotectónico de España, E. 1:1.000.000. IGME‐ENRESA,<br />

Madrid.<br />

Capote, R., Muñoz, J.A., Simón, J.L., Liesa, C.L., Arlegui, L.E.<br />

(2002). Alp<strong>in</strong>e tectonics I: <strong>the</strong> Alp<strong>in</strong>e system north of <strong>the</strong> Betic<br />

Cordillera. In: The Geology of Spa<strong>in</strong> (W. Gibbons <strong>and</strong> T.<br />

Moreno, eds.). The Geological Society, London, 367‐400.<br />

Gozalo, R., Liñán, E. (1988). Los materiales hercínicos de la<br />

Cordillera Ibérica en el contexto del Macizo Ibérico. Estudios<br />

Geológicos, 44, 399‐404.<br />

Gutiérrez, F. (1996). Gypsum karstification <strong>in</strong>duced subsidence<br />

(Calatatud Graben, Iberian Range, Spa<strong>in</strong>). Geomorphology, 16,<br />

277‐293.<br />

Gutiérrez, F., Gutiérrez, M., Gracia, F.J., McCalp<strong>in</strong>, J.P., Lucha, P.,<br />

Guerrero, J. (2008). Plio‐Quaternary extensional<br />

seismotectonics <strong>and</strong> dra<strong>in</strong>age network development <strong>in</strong> <strong>the</strong><br />

central sector of <strong>the</strong> Iberian Range (NE Spa<strong>in</strong>).<br />

Geomorphology, 102, 1, 21‐42.<br />

Gutiérrez, F., Masana, E., González, A., Guerrero, J., Lucha, P.,<br />

McCalp<strong>in</strong>, J.P. (2009). Late Quaternary paleoseismic evidence<br />

on <strong>the</strong> Munébrega Half‐graben fault (Iberian Range, Spa<strong>in</strong>).<br />

International Journal of Earth Sciences, <strong>in</strong> press.<br />

Olivé, A., del Olmo, P., Portero, J.M. (1983). Memoria y Mapa<br />

Geológico de España, E. 1:50.000. Paniza (438). IGME, Madrid,<br />

43 pp.<br />

McCalp<strong>in</strong>, J. (2008). Reevaluation of Geologic Hazards <strong>in</strong> a<br />

Mounta<strong>in</strong> Sett<strong>in</strong>g; The Case of <strong>the</strong> Climax 7.5' Quadrangle,<br />

Central Colorado, USA. 33rd International Geological<br />

Congress. Oslo. Abstract.<br />

Stirl<strong>in</strong>g, M., Rhoades, D., Berryman, K. (2002). Comparison of<br />

earthquake scal<strong>in</strong>g relations derived from data of <strong>the</strong><br />

<strong>in</strong>strumental <strong>and</strong> pre<strong>in</strong>strumental era. Bullet<strong>in</strong> of <strong>the</strong><br />

Seismological Society of America, 92 (2), 812‐830<br />

Wells DL, Coppersmith KJ (1994) New empirical relationships<br />

among magnitude, rupture length, rupture width, rupture<br />

area, <strong>and</strong> surface displacement. Bullet<strong>in</strong> of <strong>the</strong> Seismological<br />

Society of America, 84 (4), 974‐1002.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!