03.04.2013 Views

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

especially <strong>in</strong> <strong>the</strong> zones of hang<strong>in</strong>g valleys. Fig. 3 <strong>in</strong>dicates<br />

<strong>the</strong> orientation of discont<strong>in</strong>uities <strong>in</strong> terms of <strong>the</strong>ir strike<br />

direction. The dip angel is shown next to <strong>the</strong> jo<strong>in</strong>t<br />

diagram. Apart from some exceptions, <strong>the</strong> measured<br />

planes are strik<strong>in</strong>g nearly perpendicular to <strong>the</strong><br />

escarpment from east to west. With an average angle of<br />

70°‐80° <strong>the</strong>y dip uniformly <strong>in</strong>to nor<strong>the</strong>rn <strong>and</strong> sou<strong>the</strong>rn<br />

directions. The dist<strong>in</strong>ctive topographic front shown <strong>in</strong><br />

Fig. 1 evidence a “X‐formation” of two big cross<strong>in</strong>g jo<strong>in</strong>ts,<br />

which represent <strong>the</strong> described <strong>in</strong>cl<strong>in</strong>ation of tension<br />

cracks <strong>in</strong> a two‐dimensional way.<br />

Fig. 3: Jo<strong>in</strong>t diagrams present<strong>in</strong>g <strong>the</strong> orientation of tension<br />

cracks <strong>in</strong> two of <strong>the</strong> hang<strong>in</strong>g valleys<br />

The La Laja slope face represents <strong>the</strong> orientation of<br />

bedd<strong>in</strong>g planes. Due to this fact <strong>the</strong>se discont<strong>in</strong>uities also<br />

dip with approximately 70° <strong>in</strong>to eastern direction. They<br />

separate abundant, plan‐parallel columns with a width of<br />

2 m on average. This is illustrated <strong>in</strong> Fig. 4, which shows<br />

<strong>the</strong> structure of <strong>the</strong> rock formation us<strong>in</strong>g a 3D‐model<br />

developed by a light detection <strong>and</strong> rang<strong>in</strong>g method<br />

(LIDAR).<br />

Fig. 4: 3D‐LIDAR shot of <strong>the</strong> steeply <strong>in</strong>cl<strong>in</strong>ed s<strong>and</strong>stone strata<br />

LIDAR sends a wide‐ranged laser beam <strong>and</strong> is able to<br />

detect <strong>the</strong> scattered light. The distance to an object is<br />

determ<strong>in</strong>ed by <strong>the</strong> measured time delay between<br />

transmission of a pulse <strong>and</strong> detection of <strong>the</strong> reflected<br />

signal. In contrast to RADAR, <strong>the</strong> wavelengths of LIDAR<br />

are much. In order to reach every gap, two shoots were<br />

taken from different angles <strong>and</strong> put toge<strong>the</strong>r with a<br />

special software. By us<strong>in</strong>g this method <strong>the</strong> range front<br />

was measured with millimeter precision.<br />

KINEMATICS AND FORMATION OF HANGING VALLEYS<br />

Due to <strong>the</strong> special orientation of bedd<strong>in</strong>g planes <strong>and</strong><br />

tension cracks toppl<strong>in</strong>g failures of columns as well as<br />

1 st INQUA‐IGCP‐567 International Workshop on Earthquake Archaeology <strong>and</strong> <strong>Palaeoseismology</strong><br />

163<br />

wedge slid<strong>in</strong>g failures on two <strong>in</strong>tersect<strong>in</strong>g planes can be<br />

observed along <strong>the</strong> range front. Accord<strong>in</strong>g to Dikau<br />

(1996), ma<strong>the</strong>matical constra<strong>in</strong>ts shown <strong>in</strong> Table 1 depict<br />

<strong>the</strong> criteria whe<strong>the</strong>r a toppl<strong>in</strong>g or a slid<strong>in</strong>g process occurs.<br />

Table 1: Stability criteria of a cubic block<br />

< <br />

b/h > tan A block is stable<br />

> b/h > tan <br />

< b/h < tan <br />

> b/h < tan <br />

A block will slide but<br />

not topple<br />

A block will not slide<br />

but topple<br />

A block will both slide<br />

<strong>and</strong> topple<br />

The geometrical data is based on a s<strong>in</strong>gle block model,<br />

where is <strong>the</strong> slope angle, is <strong>the</strong> friction angle, <strong>and</strong> b/h<br />

is <strong>the</strong> ration width versus height (Fig. 5).<br />

Fig. 5: Marg<strong>in</strong>al case of a block between a stable position, a<br />

toppl<strong>in</strong>g <strong>and</strong> a slid<strong>in</strong>g process<br />

Toppl<strong>in</strong>g<br />

Apart from <strong>the</strong>se basics jo<strong>in</strong>t <strong>and</strong> bedd<strong>in</strong>g plane water<br />

pressures can trigger or accelerate rock movement. Such<br />

<strong>in</strong>fluences can be observed along <strong>the</strong> nor<strong>the</strong>rn part of <strong>the</strong><br />

range front, where potholes give evidences for water<br />

circulation between s<strong>and</strong>stone strata. Hence <strong>the</strong> columns<br />

lose contact to <strong>in</strong>‐situ formations <strong>and</strong> topple eastwards.<br />

Fig. 6 clarifies this process <strong>and</strong> po<strong>in</strong>ts out <strong>the</strong><br />

sedimentation of lose masses between displaced strata.<br />

The sediments weight acts like a wedge <strong>and</strong> accelerates<br />

<strong>the</strong> toppl<strong>in</strong>g. The progression of wea<strong>the</strong>r<strong>in</strong>g leads to<br />

rockfalls with its source zone at <strong>the</strong> peak of <strong>the</strong> exposed<br />

columns.<br />

Fig. 6: E‐Toppl<strong>in</strong>g of thick columns along <strong>the</strong> escarpment

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!