03.04.2013 Views

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

Archaeoseismology and Palaeoseismology in the Alpine ... - Tierra

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1 st INQUA‐IGCP‐567 International Workshop on Earthquake Archaeology <strong>and</strong> <strong>Palaeoseismology</strong><br />

TESTING THE HYPOTHESIS OF EARTHQUAKE‐RELATED DAMAGE IN<br />

STRUCTURES IN THE LYCIAN ANCIENT CITY OF PINARA, SW TURKEY<br />

B. Yerli (1) ,S. Schreiber (2), K.G. H<strong>in</strong>zen (2), J.H. ten Veen (3) <strong>and</strong> M. <strong>and</strong> M. S<strong>in</strong>tub<strong>in</strong> (4)<br />

(1) Institute for Geology, M<strong>in</strong>eralogy <strong>and</strong> Geophysics, Ruhr University, Universitätsstrasse 150, D‐44801, Bochum, GERMANY.<br />

baris.yerli@rub.de<br />

(2) Earthquake Geology Group, Cologne University, V<strong>in</strong>zenz‐Pallotti‐Str. 26, 51429 Bergisch Gladbach. GERMANY<br />

(3) TNO Built Environment <strong>and</strong> Geosciences, P.O. Box 80015, 3508 TA, THE NETHERLANDS<br />

(4) Geodynamics & Geofluids Research Group, K.U. Leuven, Celestijnenlaan 200E, 3001 Leuven, BELGIUM<br />

Abstract: Earthquake‐related damage <strong>in</strong> archaeological structures can provide important clues to <strong>in</strong>crease our knowledge of <strong>the</strong> tim<strong>in</strong>g <strong>and</strong><br />

magnitude of historical earthquakes. However, anthropogenic <strong>and</strong> o<strong>the</strong>r natural <strong>in</strong>fluences make <strong>the</strong> <strong>in</strong>vestigation more complex. The<br />

quantitative methods (e.g. laser scann<strong>in</strong>g) have been used <strong>in</strong> Pınara Ancient City to dist<strong>in</strong>guish <strong>the</strong> manmade damage from seismic‐related<br />

damage. The geological <strong>in</strong>vestigations <strong>and</strong> archaeoseismological observations <strong>in</strong>dicate that <strong>the</strong> city of Pınara has been affected by<br />

earthquakes but <strong>the</strong> relicts have been also despoiled. The Sarcophagus of Arttumpara <strong>in</strong> Pınara is deformed <strong>and</strong> <strong>the</strong> upper two massive<br />

limestone decks have been rotated ca. 5° <strong>in</strong> clockwise direction <strong>and</strong> traces of an explosion have been observed on <strong>the</strong> second ceil<strong>in</strong>g. These<br />

features make <strong>the</strong> sarcophagus a reliable <strong>and</strong> an <strong>in</strong>terest<strong>in</strong>g example for test<strong>in</strong>g <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> cause of damage.<br />

Key words: archaeoseismology, laser scann<strong>in</strong>g, damage modell<strong>in</strong>g<br />

INTRODUCTION<br />

Archaeoseismological studies usually attempt to<br />

<strong>in</strong>vestigate a possible connection between damage to <strong>the</strong><br />

archaeological structures <strong>and</strong> historical or <strong>in</strong>strumental<br />

earthquakes. The important challenge lies <strong>in</strong> separat<strong>in</strong>g<br />

earthquake‐related damage from anthropogenic <strong>and</strong><br />

o<strong>the</strong>r natural causes (Ambraseys et al., 2004; Guidoboni,<br />

2002). Recent seismological eng<strong>in</strong>eer<strong>in</strong>g models can be<br />

used to test <strong>the</strong> hypo<strong>the</strong>sis that observed build<strong>in</strong>g<br />

damage is of seismogenic nature (e.g. H<strong>in</strong>zen, 2005) by<br />

seek<strong>in</strong>g a systematic relation between build<strong>in</strong>g response<br />

<strong>and</strong> <strong>the</strong> seismic source or ground motion.<br />

Fig. 1: Plate tectonic map of <strong>the</strong> eastern Mediterranean (modified<br />

after ten Veen, 2004). FBFZ = Fethiye Burdur Fault Zone, MM =<br />

Menderes Massive, PT = Pl<strong>in</strong>y Trench, ST = Strabo Trench<br />

In <strong>the</strong> follow<strong>in</strong>g, <strong>the</strong> geological <strong>and</strong> seismological sett<strong>in</strong>g<br />

of Pınara <strong>and</strong> surround<strong>in</strong>gs will be described, followed by<br />

a sketch of <strong>the</strong> archaeoseismological results.<br />

173<br />

Subsequently, measurements <strong>and</strong> <strong>in</strong>‐situ observations are<br />

exam<strong>in</strong>ed with respect to be<strong>in</strong>g suitable traces for<br />

earthquake‐related damage. We conclude that <strong>the</strong> ma<strong>in</strong><br />

task will be to differentiate between earthquake‐related<br />

damage <strong>and</strong> anthropogenic damage. We propose to<br />

employ methods based on laser scann<strong>in</strong>g <strong>and</strong> discrete<br />

element modell<strong>in</strong>g for exam<strong>in</strong><strong>in</strong>g causes of <strong>the</strong> damage<br />

on <strong>the</strong> structures.<br />

THE ESEN BASIN<br />

The tectonic evolution of southwestern Turkey (Fig. 1) is<br />

characterized by a multi‐stage deformation, which is<br />

<strong>in</strong>itially related to <strong>the</strong> Cretaceous – Middle Miocene<br />

Neo<strong>the</strong>tys closure <strong>and</strong> subsequently to <strong>the</strong> collision of<br />

African <strong>and</strong> Eurasian plates <strong>in</strong> Late Miocene to Recent<br />

times. This tectonic process was followed by <strong>the</strong> <strong>in</strong>itiation<br />

of <strong>the</strong> north <strong>and</strong> south Anatolian transform fault systems<br />

(NAF <strong>and</strong> EAF). These transform fault systems<br />

accommodate <strong>the</strong> westward extrusion of <strong>the</strong> Anatolian<br />

platelet (e.g. Barka <strong>and</strong> Kad<strong>in</strong>sky‐Cade, 1988; Westaway,<br />

1994; Armijo et al., 1999; ten Veen et al., 2008).<br />

In southwestern Turkey <strong>the</strong> neotectonic activity is<br />

represented by <strong>the</strong> so‐called Fethiye‐Burdur Fault Zone<br />

(Barka <strong>and</strong> Reil<strong>in</strong>ger, 1997; FBFZ); a doma<strong>in</strong> with many<br />

sub‐parallel NE‐SW trend<strong>in</strong>g fault segments <strong>and</strong> bas<strong>in</strong>s <strong>in</strong><br />

<strong>the</strong> area between Fethiye <strong>and</strong> Burdur. The Eşen Bas<strong>in</strong><br />

toge<strong>the</strong>r with many similar fluvio‐lacustr<strong>in</strong>e extensional<br />

bas<strong>in</strong>s are located <strong>in</strong> <strong>the</strong> tectonically complex FBFZ <strong>and</strong><br />

are likely foundered <strong>in</strong> response to gravitational collapse<br />

of <strong>the</strong> Lycian Orogen that formed dur<strong>in</strong>g several thrust<strong>in</strong>g<br />

phases <strong>in</strong> <strong>the</strong> Cretaceous – Middle Miocene period (e.g.<br />

Coll<strong>in</strong>s <strong>and</strong> Robertson, 1999; Alçiçek et al., 2006, Alçiçek,<br />

2007).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!