06.04.2013 Views

Spectral Theory in Hilbert Space

Spectral Theory in Hilbert Space

Spectral Theory in Hilbert Space

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

122 B. STIELTJES INTEGRALS<br />

(4) C<br />

(5)<br />

b<br />

a<br />

b<br />

a<br />

f dg =<br />

f dg =<br />

d<br />

a<br />

b<br />

a<br />

f d(Cg),<br />

f dg +<br />

b<br />

d<br />

f dg for a < d < b.<br />

where f, f1, f2, g, g1 and g2 are functions, C a constant and the<br />

formulas should be <strong>in</strong>terpreted to mean that if the <strong>in</strong>tegrals to the left<br />

of the equality sign exist, then so do the <strong>in</strong>tegrals to the right, and<br />

equality holds.<br />

Proposition B.2 (Change of variables). Suppose that h is cont<strong>in</strong>uous<br />

and <strong>in</strong>creas<strong>in</strong>g and f is <strong>in</strong>tegrable with respect to g over [h(a), h(b)].<br />

Then the composite function f ◦h is <strong>in</strong>tegrable with respect to g ◦h over<br />

[a, b] and<br />

<br />

h(b)<br />

h(a)<br />

f dg =<br />

b<br />

a<br />

f ◦ h d(g ◦ h).<br />

We leave the proof also of this proposition to the reader (Exercise<br />

B.3). The formula for <strong>in</strong>tegration by parts takes the follow<strong>in</strong>g<br />

nicely symmetric form <strong>in</strong> the context of the Stieltjes <strong>in</strong>tegral.<br />

Theorem B.3 (Integration by parts). If f is <strong>in</strong>tegrable with respect<br />

to g, then g is also <strong>in</strong>tegrable with respect to f and<br />

b<br />

a<br />

g df = f(b)g(b) − f(a)g(a) −<br />

b<br />

a<br />

f dg.<br />

Proof. Let a = x0 < x1 < · · · < xn = b be a partition ∆ of [a, b]<br />

and suppose xk−1 ≤ ξk ≤ xk, k = 1, . . . , n. Set ξ0 = a, ξn+1 = b. Then<br />

a = ξ0 ≤ ξ1 ≤ · · · ≤ ξn+1 = b gives a partition ∆ ′ (one discards any<br />

ξk+1 which is equal to ξk) of [a, b] for which |∆ ′ | ≤ 2|∆| (check this!).<br />

We have ξk ≤ xk ≤ ξk+1 and<br />

s =<br />

n<br />

g(ξk)(f(xk) − f(xk−1)) =<br />

k=1<br />

n<br />

n−1<br />

g(ξk)f(xk) − g(ξk+1)f(xk)<br />

k=1<br />

= f(b)g(b) − f(a)g(a) −<br />

k=0<br />

n<br />

f(xk)(g(ξk+1) − g(ξk)).<br />

If |∆| → 0 we have |∆ ′ | → 0, so the last sum converges to b<br />

f dg<br />

a<br />

(note that if ξk+1 = ξk then the correspond<strong>in</strong>g term <strong>in</strong> the sum is 0).<br />

It follows that s converges to f(b)g(b) − f(a)g(a) − b<br />

f dg and the<br />

a<br />

theorem follows. <br />

k=0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!