06.04.2013 Views

Spectral Theory in Hilbert Space

Spectral Theory in Hilbert Space

Spectral Theory in Hilbert Space

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

40 7. THE SPECTRAL THEOREM<br />

function of λ for any f, so we have<br />

∞<br />

<br />

1 t<br />

(7.1) 〈Rλf, f〉 = α + βλ + −<br />

t − λ 1 + t2 <br />

dσf,f(t),<br />

−∞<br />

where σf,f is <strong>in</strong>creas<strong>in</strong>g and α, β may depend on f. S<strong>in</strong>ce Rλ ≤ 1<br />

|Im λ| ,<br />

we f<strong>in</strong>d that f 2 is an upper bound for ν〈Riνf, f〉 for ν ∈ R, the<br />

imag<strong>in</strong>ary part of which is βν 2 + ∞<br />

−∞<br />

ν2 dσf,f (t)<br />

t2 +ν2 . Hence β = 0, and by<br />

Fatou’s lemma we get, as ν → ∞, that ∞<br />

−∞ dσf,f ≤ f 2 . A more<br />

elementary argument is the follow<strong>in</strong>g: For ν, ε > 0 we have<br />

1<br />

1 + ε2 νε<br />

∞<br />

ν<br />

dσf,f ≤<br />

2<br />

t2 + ν2 dσf,f(t) ≤ f 2 ,<br />

−νε<br />

−∞<br />

1 s<strong>in</strong>ce 1+ε2 ≤ ν2<br />

ν2 +t2 for |t| ≤ νε, so lett<strong>in</strong>g ν → ∞, and then ε → 0, we<br />

obta<strong>in</strong> the same bound. We may now assume σf,f to be normalized so<br />

as to be left-cont<strong>in</strong>uous and σf,f(−∞) = 0. Clearly ∞ t<br />

−∞ 1+t2 dσf,f(t)<br />

is absolutely convergent, so this part of the <strong>in</strong>tegral <strong>in</strong> (7.1) may be<br />

<strong>in</strong>corporated <strong>in</strong> the constant α. So, with absolute convergence, we have<br />

〈Rλf, f〉 = α ′ + ∞ dσf,f (t)<br />

. However, for λ → ∞ along the imag<strong>in</strong>ary<br />

−∞ t−λ<br />

axis, both the left hand side and the <strong>in</strong>tegral → 0 (Exercise 7.1), so we<br />

must have α ′ = 0. The proof is now f<strong>in</strong>ished <strong>in</strong> the case f = g.<br />

By the polarization identity (Exercise 7.2)<br />

〈Rλf, g〉 = 1<br />

3<br />

i<br />

4<br />

k 〈Rλ(f + i k g), f + i k g〉 ,<br />

k=0<br />

so we obta<strong>in</strong> 〈Rλf, g〉 = ∞ dσf,g(t)<br />

−∞ t−λ<br />

σf,g = 1<br />

4<br />

3<br />

k=0<br />

by sett<strong>in</strong>g<br />

i k σ f+i k g,f+i k g.<br />

The function σf,g has the correct normalization, so only the bound on<br />

the total variation rema<strong>in</strong>s to be proved. But if ∆ is an <strong>in</strong>terval, then<br />

∆ dσf,g is a semi-scalar product on H, so Cauchy-Schwarz’ <strong>in</strong>equality<br />

<br />

<br />

∆ dσf,g<br />

<br />

2 ≤ <br />

∆ dσf,f<br />

<br />

∆ dσg,g <br />

is valid. For ∆ = R this shows that<br />

R dσf,g is bounded by fg. If {∆j} ∞ 1 is a partition of R <strong>in</strong>to disjo<strong>in</strong>t<br />

<strong>in</strong>tervals we obta<strong>in</strong><br />

<br />

<br />

dσf,g<br />

<br />

≤<br />

∆j<br />

∆j<br />

dσf,f<br />

<br />

<br />

<br />

≤<br />

∆j<br />

<br />

∆j<br />

dσg,g<br />

dσf,f<br />

1<br />

2<br />

1<br />

2 <br />

∆j<br />

dσg,g<br />

1<br />

2<br />

≤ fg,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!