06.04.2013 Views

Spectral Theory in Hilbert Space

Spectral Theory in Hilbert Space

Spectral Theory in Hilbert Space

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

6. NEVANLINNA FUNCTIONS 37<br />

choose k and n such that ρ(rn) − ρ(rk) < ε. We then obta<strong>in</strong><br />

−ε ≤ lim (ρjj(x) − ρ(x)) ≤ lim (ρjj(x) − ρ(x)) ≤ ε .<br />

j→∞<br />

j→∞<br />

Hence {ρjj} ∞ 1 converges po<strong>in</strong>twise to ρ, except possibly <strong>in</strong> po<strong>in</strong>ts of<br />

discont<strong>in</strong>uity of ρ. But there are at most countably many such discont<strong>in</strong>uities,<br />

ρ be<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>g. Hence repeat<strong>in</strong>g the trick of extract<strong>in</strong>g<br />

subsequences, and then us<strong>in</strong>g the ‘diagonal’ sequence, we get a subsequence<br />

of the orig<strong>in</strong>al sequence which converges everywhere <strong>in</strong> I. We<br />

now obta<strong>in</strong> (1).<br />

If f is the characteristic function of a compact <strong>in</strong>terval whose endpo<strong>in</strong>ts<br />

are po<strong>in</strong>ts of cont<strong>in</strong>uity for ρ and all ρj it is obvious that (6.3)<br />

holds. It follows that (6.3) holds if f is a stepfunction with all discont<strong>in</strong>uities<br />

at po<strong>in</strong>ts where ρ and all ρj are cont<strong>in</strong>uous. If f is cont<strong>in</strong>uous<br />

and ε > 0 we may, by uniform cont<strong>in</strong>uity, choose such a stepfunction<br />

g so that supI|f − g| < ε. If C is a common bound for all ρj we then<br />

obta<strong>in</strong> | <br />

I (f − g) dρ| < 2Cε and similarly with ρ replaced by ρj. It<br />

follows that limj→∞| <br />

I f dρj − <br />

f dρ| ≤ 4Cε and s<strong>in</strong>ce ε is arbitrary<br />

I<br />

positive (2) follows. <br />

Proof of Theorem 6.3. Accord<strong>in</strong>g to Lemma 6.2 we have, for<br />

|z| < 1,<br />

G(Rz) = i Im G(0) + 1<br />

2π<br />

π<br />

−π<br />

e iθ + z<br />

e iθ − z dσR(θ) ,<br />

where σR(θ) = θ<br />

−π Re G(Reiϕ ) dϕ. Hence σR is <strong>in</strong>creas<strong>in</strong>g, ≥ 0 and<br />

bounded from above by σR(π). Now Re G is a harmonic function so it<br />

has the mean value property, which means that σR(π) = 2π Re G(0).<br />

This is <strong>in</strong>dependent of R, so by Helly’s theorem we may choose a sequence<br />

Rj ↑ 1 such that σR converges to an <strong>in</strong>creas<strong>in</strong>g function σ. Use<br />

of the second part of Helly’s theorem completes the proof. <br />

To prove the uniqueness of the function ρ of Theorem 6.1 we need<br />

the follow<strong>in</strong>g simple, but important, lemma.<br />

Lemma 6.5 (Stieltjes’ <strong>in</strong>version formula). Let ρ be complex-valued<br />

of locally bounded variation, and such that ∞ dρ(t)<br />

−∞ t2 is absolutely con-<br />

+1<br />

vergent. Suppose F (λ) is given by (6.1). Then if y < x are po<strong>in</strong>ts of<br />

cont<strong>in</strong>uity of ρ we have<br />

ρ(x) − ρ(y) = lim<br />

ε↓0<br />

1<br />

2πi<br />

x<br />

y<br />

(F (s + iε) − F (s − iε) ds<br />

= lim<br />

ε↓0<br />

1<br />

π<br />

x<br />

y<br />

∞<br />

−∞<br />

ε dρ(t)<br />

(t − s) 2 ds .<br />

+ ε2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!