06.04.2013 Views

Spectral Theory in Hilbert Space

Spectral Theory in Hilbert Space

Spectral Theory in Hilbert Space

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

11. STURM-LIOUVILLE EQUATIONS 77<br />

for µ = c, d. However, Lemma 11.10 ensures the absolute convergence<br />

of these <strong>in</strong>tegrals. Chang<strong>in</strong>g the order of <strong>in</strong>tegration gives<br />

<br />

Γ<br />

û(λ)û(λ)m(λ) dλ =<br />

∞<br />

−∞<br />

<br />

Γ<br />

û(λ)û(λ)( 1 t<br />

−<br />

t − λ t2 ) dλ dρ(t)<br />

+ 1<br />

<br />

= −2πi<br />

c<br />

d<br />

|û(t)| 2 dρ(t)<br />

s<strong>in</strong>ce for c < t < d the residue of the <strong>in</strong>ner <strong>in</strong>tegral is −|û(t)| 2 dρ(t)<br />

whereas t = c, d do not carry any mass and the <strong>in</strong>ner <strong>in</strong>tegrand is<br />

regular for t < c and t > d.<br />

Similarly we have<br />

<br />

Γ<br />

〈Rλu, u〉 dλ =<br />

∞<br />

−∞<br />

<br />

d〈Etu, u〉<br />

Γ<br />

dλ<br />

t − λ<br />

<br />

= −2πi<br />

c<br />

d<br />

d〈Etu, u〉<br />

which completes the proof. <br />

Lemma 11.12. If u ∈ L2 (a, b) the generalized Fourier transform<br />

uϕ(·, t) as x → b. Furthermore,<br />

û ∈ L 2 ρ exists as the L 2 ρ-limit of x<br />

a<br />

〈Etu, v〉 =<br />

t<br />

−∞<br />

ûˆv dρ .<br />

In particular, 〈u, v〉 = 〈û, ˆv〉ρ if u and v ∈ L 2 (a, b).<br />

Proof. If u has compact support Lemma 11.11 shows that (11.3)<br />

holds for a dense set of values c, d s<strong>in</strong>ce functions of bounded variation<br />

are a.e. differentiable. S<strong>in</strong>ce both Et and ρ are left-cont<strong>in</strong>uous we<br />

obta<strong>in</strong>, by lett<strong>in</strong>g d ↑ t, c → −∞ through such values,<br />

〈Etu, v〉 =<br />

t<br />

−∞<br />

ûˆv(t) dρ(t)<br />

when u, v have compact supports; first for u = v and then <strong>in</strong> general<br />

by polarization. As t → ∞ we also obta<strong>in</strong> that 〈u, v〉 = 〈û, ˆv〉ρ when u<br />

and v have compact supports.<br />

For arbitrary u ∈ L 2 (a, b) we set, for c ∈ (a, b),<br />

uc(x) =<br />

<br />

u(x) for x < c<br />

0 otherwise<br />

and obta<strong>in</strong> a transform ûc. If also d ∈ (a, b) it follows that ûc −ûdρ =<br />

uc − ud, and s<strong>in</strong>ce uc → u <strong>in</strong> L 2 (a, b) as c → b, Cauchy’s convergence<br />

pr<strong>in</strong>ciple shows that ûc converges to an element û ∈ L 2 ρ as c → b. The<br />

lemma now follows <strong>in</strong> full generality by cont<strong>in</strong>uity.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!