06.04.2013 Views

Spectral Theory in Hilbert Space

Spectral Theory in Hilbert Space

Spectral Theory in Hilbert Space

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

80 11. STURM-LIOUVILLE EQUATIONS<br />

Theorem 11.17. Suppose u ∈ D(T ). Then the <strong>in</strong>verse transform<br />

〈û, ϕ(x, ·)〉ρ converges locally uniformly to u(x).<br />

Proof. The proof is very similar to that of Corollary 11.4. Put<br />

v = (T − i)u so that u = Riv. Let K be a compact <strong>in</strong>terval, and put<br />

uK(x) = <br />

K û(t)ϕ(x, t) dP (t) = F −1 (χû)(x), where χ is the characteristic<br />

function for K. Def<strong>in</strong>e vK similarly. Then by Lemma 11.14<br />

RivK = F −1 ( χ(t)ˆv(t)<br />

) = F<br />

t − i<br />

−1 (χû) = uK.<br />

S<strong>in</strong>ce vK → v <strong>in</strong> L2 (a, b) as K → R, it follows from Theorem 11.1<br />

that uK → u <strong>in</strong> C1 (L) as K → R, for any compact sub<strong>in</strong>terval L of<br />

[a, b). <br />

Example 11.18 (S<strong>in</strong>e and cos<strong>in</strong>e transforms). Let us <strong>in</strong>terpret Theorem<br />

11.8 for the case of the equation −u ′′ = λu on the <strong>in</strong>terval [0, ∞).<br />

We shall look at the cases when the boundary condition at 0 is either<br />

a Dirichlet condition (α = 0 <strong>in</strong> (10.7)) or a Neumann condition (α =<br />

π/2). The general solution of the equation is u(x) = Ae √ −λx +Be − √ −λx .<br />

Let the root be the pr<strong>in</strong>cipal branch, i.e., the branch where the real<br />

part is ≥ 0. Then the only solutions <strong>in</strong> L 2 (0, ∞) are, unless λ ≥ 0,<br />

the multiples of e −√ −λx = cos(i √ −λx) + i s<strong>in</strong>(i √ −λx). It follows that<br />

the equation is <strong>in</strong> the limit po<strong>in</strong>t condition at <strong>in</strong>f<strong>in</strong>ity (this is also a<br />

consequence of Theorem 10.10).<br />

With a Dirichlet condition at 0 we have θ(x, λ) = cos(i √ −λx)<br />

and ϕ(x, λ) = −i s<strong>in</strong>(i √ −λx)/ √ −λ. It follows that the m-function is<br />

mD(λ) = − √ −λ. Similarly, the m-function <strong>in</strong> the case of a Neumann<br />

condition at 0 is mN(λ) = 1/ √ −λ, us<strong>in</strong>g aga<strong>in</strong> the pr<strong>in</strong>cipal branch of<br />

the root.<br />

Us<strong>in</strong>g the Stieltjes <strong>in</strong>version formula Lemma 6.5 we √see that the<br />

t dt for t ≥<br />

correspond<strong>in</strong>g spectral measures are given by dρD(t) = 1<br />

π<br />

0, dρD = 0 <strong>in</strong> (−∞, 0), respectively dρN(t) = dt<br />

π √ t for t ≥ 0, dρN = 0<br />

<strong>in</strong> (−∞, 0). If u ∈ L2 (0, ∞) and we def<strong>in</strong>e û(t) = ∞<br />

0 u(x) s<strong>in</strong>(√tx) √ dx,<br />

t<br />

as a generalized <strong>in</strong>tegral converg<strong>in</strong>g <strong>in</strong> L2 ρD , then the <strong>in</strong>version formula<br />

reads u(x) = 1<br />

∞<br />

π 0 û(t) s<strong>in</strong>(√tx) dt.<br />

In this case one usually changes variable <strong>in</strong> the transform and<br />

def<strong>in</strong>es the s<strong>in</strong>e transform S(u)(ξ) = ∞<br />

0 u(x) s<strong>in</strong>(ξx) dx = ξû(ξ2 ).<br />

Chang<strong>in</strong>g variable to ξ = √ t <strong>in</strong> the <strong>in</strong>version formula above then shows<br />

that u(x) = 2<br />

∞<br />

S(u)(ξ) s<strong>in</strong>(ξx) dξ.<br />

π 0<br />

Similarly, if we set û(t) = ∞<br />

0 u(x) cos(√tx) dx the <strong>in</strong>version for-<br />

dt. In this case it is aga<strong>in</strong><br />

mula obta<strong>in</strong>ed is u(x) = 1<br />

π<br />

∞<br />

0 û(t) cos(√ tx)<br />

√ t<br />

common to use ξ = √ t as the transform variable, so one def<strong>in</strong>es<br />

the cos<strong>in</strong>e transform C(u)(ξ) = ∞<br />

u(x) cos(ξx) dx. Chang<strong>in</strong>g vari-<br />

0<br />

ables <strong>in</strong> the <strong>in</strong>version formula above then gives the <strong>in</strong>version formula<br />

C(u)(ξ) cos(ξx) dξ for the cos<strong>in</strong>e transform.<br />

u(x) = 2<br />

π<br />

∞<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!