06.04.2013 Views

Spectral Theory in Hilbert Space

Spectral Theory in Hilbert Space

Spectral Theory in Hilbert Space

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

42 7. THE SPECTRAL THEOREM<br />

as<br />

The resolvent relation Rλ − Rµ = (λ − µ)RλRµ may be expressed<br />

∞<br />

−∞<br />

1<br />

t − λ<br />

d〈Etf, g〉<br />

t − µ =<br />

∞<br />

−∞<br />

d〈EtRµf, g〉<br />

t − λ<br />

(check this!), so the uniqueness of the Stieltjes transform shows that<br />

〈EtRµf, g〉 = t d〈Esf,g〉<br />

. But<br />

−∞ s−µ<br />

〈EtRµf, g〉 = 〈Rµf, Etg〉 =<br />

∞<br />

−∞<br />

d〈Esf, Etg〉<br />

.<br />

s − µ<br />

So, aga<strong>in</strong> by uniqueness, 〈Esf, Etg〉 = 〈Euf, g〉 where u = m<strong>in</strong>(s, t),<br />

i.e., EtEs = Em<strong>in</strong>(s,t). For s = t this shows that Et is a projection, and<br />

if t > s we get 0 ≤ (Et − Es) ∗ (Et − Es) = (Et − Es) 2 = Et − Es so that<br />

{Et}t∈R is an <strong>in</strong>creas<strong>in</strong>g family of orthogonal projections.<br />

Now suppose f ∈ D(T ) and v = T f. For any non-real λ we then<br />

have f = Rλ(v−λf) or Rλv = f +λRλf. S<strong>in</strong>ce 1+λ/(t−λ) = t/(t−λ)<br />

we therefore obta<strong>in</strong><br />

∞<br />

−∞<br />

dσv,g(t)<br />

t − λ =<br />

∞<br />

−∞<br />

t dσf,g<br />

t − λ<br />

so that σv,g(t) = t<br />

−∞ s dσf,g(s). In particular, 〈T f, g〉 = ∞<br />

−∞t d〈Etf, g〉.<br />

We also get σv,v(t) = t<br />

−∞ s dσf,v(s) = t<br />

−∞ s2 dσf,f(s), so that T f2 =<br />

∞<br />

−∞s2d〈Esf, f〉.<br />

Next we prove that any u ∈ H for which ∞<br />

−∞s2 d〈Esu, u〉 < ∞ is<br />

<strong>in</strong> D(T ). To see this, note that<br />

<br />

<br />

<br />

<br />

<br />

|d〈Esu, v〉| ≤ d〈Esu, u〉 d〈Esv, v〉<br />

∆<br />

∆<br />

if ∆ is a f<strong>in</strong>ite union of <strong>in</strong>tervals. This follows just as <strong>in</strong> the proof of<br />

Lemma 7.2. Now let ∆k = {s | 2 k−1 < |s| ≤ 2 k }, k ∈ Z. Then<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

s d〈Esu, v〉 <br />

≤ 2k |d〈Esu, v〉|<br />

<br />

<br />

∆k<br />

∆k<br />

≤ 2 k<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

d〈Esu, u〉 d〈Esv, v〉 ≤ 2<br />

∆k<br />

∆k<br />

∆k<br />

∆<br />

s2 <br />

d〈Esu, u〉<br />

∆k<br />

d〈Esv, v〉.<br />

If now ∞<br />

−∞s2 d〈Esu, u〉 < ∞ we obta<strong>in</strong> from this by add<strong>in</strong>g over all k<br />

<br />

<br />

and us<strong>in</strong>g Cauchy-Schwarz’ <strong>in</strong>equality for sums that ∞<br />

−∞s d〈Esu,<br />

<br />

<br />

v〉 ≤<br />

∞<br />

2 −∞s2d〈Esu, u〉v so that the anti-l<strong>in</strong>ear form v ↦→ ∞<br />

−∞s d〈Esu, v〉

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!