06.04.2013 Views

Spectral Theory in Hilbert Space

Spectral Theory in Hilbert Space

Spectral Theory in Hilbert Space

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

78 11. STURM-LIOUVILLE EQUATIONS<br />

Note that we have proved that F is an isometry from L 2 (a, b) to<br />

L 2 ρ.<br />

Lemma 11.13. The <strong>in</strong>tegral <br />

K ûϕ(x, ·) dρ is <strong>in</strong> L2 (a, b) if K is a<br />

compact <strong>in</strong>terval and û ∈ L 2 ρ, and as K → R the <strong>in</strong>tegral converges<br />

<strong>in</strong> L 2 (a, b). The limit F −1 (û) is called the <strong>in</strong>verse transform of û.<br />

If u ∈ L 2 (a, b) then F −1 (F(u)) = u. F −1 (û) = 0 if and only if û is<br />

orthogonal <strong>in</strong> L 2 ρ to all generalized Fourier transforms.<br />

Proof. If û ∈ L 2 ρ has compact support, then u(x) = 〈û, ϕ(x, ·)〉ρ<br />

is cont<strong>in</strong>uous, so uc ∈ L 2 (a, b) for c ∈ (a, b), and has a transform ûc.<br />

We have<br />

uc 2 =<br />

c<br />

a<br />

∞ <br />

−∞<br />

ûϕ(x, ·) dρ u(x) dx.<br />

Considered as a double <strong>in</strong>tegral this is absolutely convergent, so chang<strong>in</strong>g<br />

the order of <strong>in</strong>tegration we obta<strong>in</strong><br />

uc 2 =<br />

∞<br />

−∞<br />

c a<br />

<br />

uϕ(·, t) û(t) dρ(t)<br />

= 〈û, ûc〉ρ ≤ ûρûcρ = ûρuc,<br />

accord<strong>in</strong>g to Lemma 11.12. Hence uc ≤ ûρ, so u ∈ L 2 (a, b), and<br />

u ≤ ûρ. If now û ∈ L 2 ρ is arbitrary, this <strong>in</strong>equality shows (like <strong>in</strong> the<br />

proof of Lemma 11.12) that <br />

K û(t)ϕ(x, t) dρ(t) converges <strong>in</strong> L2 (a, b) as<br />

K → R through compact <strong>in</strong>tervals; call the limit u1. If v ∈ L 2 (a, b),<br />

ˆv is its generalized Fourier transform, K is a compact <strong>in</strong>terval, and<br />

c ∈ (a, b), we have<br />

<br />

K<br />

c a<br />

<br />

v(x)ϕ(x, t) dx û(t) dρ(t) =<br />

c<br />

a<br />

<br />

v(x)<br />

K<br />

û(t)ϕ(x, t) dρ(t) dx<br />

by absolute convergence. Lett<strong>in</strong>g c → b and K → R we obta<strong>in</strong> 〈û, ˆv〉ρ =<br />

〈u1, v〉. If û is the transform of u, then by Lemma 11.12 u1 − u is<br />

orthogonal to L 2 (a, b), so u1 = u. Similarly, u1 = 0 precisely if û is<br />

orthogonal to all transforms. <br />

We have shown the <strong>in</strong>verse transform to be the adjo<strong>in</strong>t of the transform<br />

as an operator from L 2 (a, b) <strong>in</strong>to L 2 ρ. The basic rema<strong>in</strong><strong>in</strong>g difficulty<br />

is to prove that the transform is surjective, i.e., accord<strong>in</strong>g to<br />

Lemma 11.13, that the <strong>in</strong>verse transform is <strong>in</strong>jective. The follow<strong>in</strong>g<br />

lemma will enable us to prove this.<br />

Lemma 11.14. The transform of Rλu is û(t)/(t − λ).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!