23.08.2013 Views

Specification of Reactive Hardware/Software Systems - Electronic ...

Specification of Reactive Hardware/Software Systems - Electronic ...

Specification of Reactive Hardware/Software Systems - Electronic ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Pro<strong>of</strong>s <strong>of</strong> Propositions and Transformations 425<br />

Case rule (a’)<br />

Then BSpece 1 S § p£ e<br />

1 ; S p<br />

2 Cp ¡ ¡£ Er¢ , BSpec E1£ ¡ e 2 S § p£ e<br />

1 ¡ ; S p<br />

2 Cp ¡ ¡£ Er¢ where S E1£ ¡ p£<br />

¡ e<br />

1 , and <br />

§ S p£ e<br />

1 Cp ¡ ¡£ Er¢ , env , Sys E1£ ¡ p a <br />

£ § , S Sys<br />

p£ e<br />

1 ¡ Cp ¡ ¡£ Er¢ , env¡ , Sys E1£ ¡ p , . Items (ii)<br />

Sys<br />

and (v) are proved as in case axiom (1’). By induction we ¡ ¤ have ¡<br />

a Abs(a)<br />

AASort( <br />

§ S p£ e<br />

1 Cp ¡ ¡£ Er¢ , env , Sys E1£ ¡ p ), but then clearly a ¡ ¤ Abs(a) ¡ AASort(conf ¥ Sys p<br />

1 ),<br />

so (iii) holds. For (i) we have to show that the condition <strong>of</strong> rule (3) <strong>of</strong> the definition <strong>of</strong><br />

Conf p is satisfied. Again, the first part <strong>of</strong> the condition follows from conf p<br />

1 ¡ Conf p . For<br />

the second part first notice that since conf p<br />

1 ¡ Conf p , AASort(S p£ e<br />

1 ; S p<br />

2) AASort(C ¥ p ¥ Sysp ).<br />

But then AASort(S p£ e<br />

¥ 1 ) AASort(Cp ¥ Sysp ) and thus <br />

§ S p£ e<br />

1 Cp ¡ ¡£ Er¢ ¥ envs¥ Sys E1£ ¡ p ¡ Conf ¥ Sys p .<br />

By induction we then have <br />

§ S p£ e<br />

1 ¡ Cp ¡ ¡£ Er¢ ¥ env¡ , Sys E1£ ¡ p ¡ Conf ¥ Sys p and thus AASort(S p£ e<br />

1 ¡ )<br />

¥ AASort(Cp ¥ Sysp ). But then AASort(S p£ e<br />

1 ¡ ; S p<br />

2 ) ¥ AASort(Cp ¥ Sysp ), and consequently<br />

conf p<br />

2 ¡ Conf p .<br />

Case rules (b’), ¡ ¡ ,(r’)<br />

Are all proved analogous to the case <strong>of</strong> rule (a’).<br />

Case rule (s’)<br />

Then conf p<br />

1 = BSpece 1 ¢ BSpece2 ¥ envs1 envs2 Sys ¥ p , conf ¥ Sys p<br />

2 = BSpece 1 ¡ ¢ BSpece envs1¡ 2 ¥<br />

envs2 Sys ¥ p , and ¥ Sys BSpece 1 ¥ envs1 ¥ Sysp a <br />

£<br />

e BSpec1 ¡ ¥ envs1¡ ¥ Sys ¥ Sys<br />

p . By induction<br />

¥ Sys<br />

we ¡ ¤ have ¡ a Abs(a) AASort( BSpece 1 ¥ envs1 ¥ Sysp ), AASort ( ¥ Sys BSpece 1 , envs1 , Sysp , ) = AASort( Sys BSpece 1 ¡ ¥ envs1¡ ¥ Sysp ), and Reset ( ¥ Sys BSpece 1 , envs1 , Sysp , ) = Reset<br />

Sys<br />

( BSpece 1 ¡ ¥ envs1¡ ¥ Sysp ). From this, (ii), (iii), and (v) follow easily. For (i) observe that<br />

¥ Sys<br />

for conf p<br />

1 to be member <strong>of</strong> Conf p , BSpece 1 ¥ envs1 ¥ Sysp and ¥ Sys BSpece 2 ¥ envs2¥ Sysp ¥ Sys<br />

both must be member <strong>of</strong> Conf p (see rule (5) <strong>of</strong> the definition <strong>of</strong> Conf p ). But then by<br />

induction BSpece 1 ¡ ¥ envs1¡ ¥ Sysp ¡ Conf ¥ Sys p , and thus (using rule (5) again) conf p<br />

2 ¡<br />

Conf p .<br />

Case rules (n’), ¡ ¡ ,(w’)<br />

Are proved in a similar way as in the case <strong>of</strong> rule (s’).<br />

Case rule (x’)<br />

Then conf p<br />

1 = <br />

§ BSpece Cc ¡£ Er¢ ¥ envs¥ E1£ ¡ ¡ Sysp Sys ¥ , conf p<br />

2 = <br />

§ BSpece ¡ Cc ¡£ Er¢ E1£ envs¡ ¡ ¡ , , Sysp Sys , , and BSpece envs¥ ¥ Sysp <br />

£<br />

¡ Sys<br />

¥ ¥ envs¡ ¥<br />

a<br />

e BSpec Sysp Sys ¥ . Since conf p<br />

¡ 1 Conf p<br />

we have that Reset(BSpec e ) BSpec p § § E1© P1 ¥¡ ¥ Er© Pr where BSpec p denotes the behaviour<br />

specification and where P1 ¥¡ ¡ ¡ ¥ Pn denote the expression parameters <strong>of</strong> the<br />

cluster class with name C c . Item (ii) directly follows from the definition <strong>of</strong> Reset.<br />

By induction, ¡ ¤ a ¡ Abs(a) AASort( BSpece envs¥ Sys ¥ p Sys ). Further we have<br />

¥<br />

AASort( BSpece envs¥ Sys ¥ p Sys ) = AASort(BSpec ¥ e Sys ¥ p ) = £<br />

according to Lemma ¦ 1<br />

AASort(Reset(BSpece )¥ Sysp ) = AASort(BSpecp E1© § ¥¡ ¡ ¡ ¥ Er© Pr ¥ § P1 Sysp ) = £<br />

¦<br />

according to<br />

Lemma 3 AASort (BSpecp , Sysp ) = £<br />

¦ context condition (10’) AASort(Cc ¥ Sysp ) =<br />

AASort(conf p<br />

1 ), and thus (iii) follows. (v) is true because AASort(conf p<br />

1 ) = AASort(Cc , Sysp )<br />

= AASort(conf p<br />

p<br />

2 ). Since conf1 ¡ Conf p , we have using rule (4) <strong>of</strong> the definition <strong>of</strong> Conf p<br />

that BSpec e , envs , Sys p , Sys ¡ Conf p . By induction we then have BSpec e ¡ ¥ envs¡ ¥ Sys p ,<br />

Sys ¡ Conf p and Reset ( BSpec e ¥ envs¥ Sys p ¥ Sys ) = Reset ( BSpec e ¡ ¥ envs¡ ¥ Sys p ¥ Sys ). Now,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!