23.10.2012 Views

View PDF Version - RePub - Erasmus Universiteit Rotterdam

View PDF Version - RePub - Erasmus Universiteit Rotterdam

View PDF Version - RePub - Erasmus Universiteit Rotterdam

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

where<br />

wi,k(y i, θ) =<br />

(k =1,...,K).<br />

wk |Dk| −1/2 |Qi,k| −1/2 �<br />

exp − 1<br />

K�<br />

wj |Dj|<br />

j=1<br />

−1/2 |Qi,j| −1/2 exp<br />

Discriminant analysis using a MLMM with a normal mixture 151<br />

�<br />

′ −1<br />

μk Dk μ ′ −1<br />

k − ηi,k Qi,kη �<br />

i,k<br />

�<br />

2<br />

�<br />

− 1<br />

�<br />

′ −1<br />

μj Dj 2<br />

μ ′ −1<br />

j − ηi,j Qi,j η �<br />

i,j<br />

�<br />

(23)<br />

The Bayesian estimate of bi integrating out the uncertainty with which the pa-<br />

rameters θ are estimated is the posterior mean of � bi. That is, E � E(bi | y i, θ) � � y � ,<br />

where the second expectation is done over the different possible θ values. For<br />

θ (1) ,...,θ (M) , the (MCMC) sample from the posterior distribution p(θ | y), � b (m)<br />

i =<br />

E(bi | y i, θ (m) )(m =1,...,M)andE � E(bi | y i, θ) � �<br />

� y is estimated as<br />

�bi = � E � E(bi | y i, θ) � � y � = 1<br />

M<br />

M�<br />

E � �<br />

bi<br />

� y i, θ (m)� = 1<br />

M<br />

m=1<br />

M�<br />

m=1<br />

�b (m)<br />

i , (24)<br />

leading to the Bayesian estimate of the i-th individual value of random effects.<br />

Discrimination procedure<br />

To develop a discrimination procedure, we assume that a training data set is available<br />

for which we know the allocation of the involved subjects (patients, longitudinal<br />

profiles) to prognostic groups (g =0,...,G − 1). Let y g = {y i : i ∈<br />

prognostic group g} be the observed values of the longitudinal markers for subjects<br />

in the training data set belonging to prognostic group g. Each prognostic group is<br />

characterized by MLMM written as (1) or written in a condensed way as (2), with<br />

the random effects distribution specified by the mixture (3), i.e.,<br />

Y i = X g<br />

i αg + Z g<br />

i bi<br />

⎫<br />

+ εi,<br />

bi = s g + S g b ∗ i ,<br />

b ∗ i<br />

i.i.d.<br />

∼ � K<br />

k=1<br />

w g<br />

k<br />

εi ∼N(0, diag(σ g<br />

1<br />

N (μg k , Dg<br />

k ),<br />

2 ,...,σ g<br />

1<br />

(i ∈ prognostic group g).<br />

2 ,...,σ g<br />

R<br />

2 g 2<br />

,...,σR ))<br />

⎪⎬<br />

⎪⎭<br />

(25)<br />

Let θ g = � αg′ , w g′ , μ g′<br />

g ′ g<br />

1 ,...,μK , vec(D1 ),...,vec(Dg K ),σg<br />

2 g 2<br />

1 ,...,σR � ′<br />

be the model<br />

parameters for group g. Note that not only the values of parameters θ g but also<br />

the structure of the MLMM (25), for example the structure of matrices X g<br />

i and Zg<br />

i ,<br />

may differ between prognostic groups.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!