27.03.2014 Views

SEKE 2012 Proceedings - Knowledge Systems Institute

SEKE 2012 Proceedings - Knowledge Systems Institute

SEKE 2012 Proceedings - Knowledge Systems Institute

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

see the 5 th column of C is deleted in D. So j=5 and C is<br />

5<br />

shown above.<br />

In Step 4, the elements in Y are as follows:<br />

S 2<br />

1 1 0 0 0 1 0 0<br />

0 1 1 1 0 1 1 1<br />

y det( D) 1; y det( D ( C )) 1* 1 5<br />

2<br />

S<br />

0 0 1 1 0 0 1 1<br />

S<br />

:5 :1 2 2<br />

0 0 0 1 1 0 0 1<br />

Similarly, y det( D ( C )) 2 , y det( D ( C )) 1 ,<br />

S2 : 2 2 5<br />

S2 : 3 3 5<br />

<br />

T<br />

y det( D ( C )) 1 Y 2 2 1 1 1<br />

.<br />

. Thus <br />

S2 : 4 4 5<br />

<br />

In step 5, Y 1Y<br />

2 2 1 1 1<br />

S 2<br />

T<br />

.<br />

S2<br />

S2<br />

In step 6, the elements of Y is as follows:<br />

y( s ) 0,<br />

1<br />

y( s ) 0,<br />

2<br />

y( s ) y 3<br />

( s ) 2, y( s ) y<br />

3 4<br />

( s ) 2,<br />

4<br />

S S 1 1<br />

y( s ) y ( s ) 1, y( s ) y ( s ) 1, y( s ) y<br />

( s ) 1<br />

5 S 5 6 S 6 7 S 7<br />

1 1 1<br />

Thus we get an S-invariant Y <br />

supported by S s , s , s , s , s .<br />

2 3 4<br />

5 6 7<br />

0 0 2 2 1 1 1 T<br />

In Algorithm 2, th e time complexity of Step 1 is<br />

2<br />

O(| S1<br />

| | T |)<br />

[10] 3<br />

. For Step 2, it is O(| S1<br />

| )<br />

[10] ; For Step 3, it is<br />

4<br />

O(| S 1 |) ; For Step 4, it is O(| S1<br />

| )<br />

[10] ; For Step 5-7, the time<br />

complexity is all O(| S |) . So the time complexity of Algorithm<br />

2 4<br />

2 is O(| S | | T | | S | | S | ) .<br />

1 1<br />

VI. CASE STUDY<br />

Taking Petri net and place su bset S <br />

1<br />

2 s , s , s<br />

1 4 5<br />

in<br />

Fig.1 as a case.<br />

2 0 1 2 0 1 <br />

r<br />

0 0 0<br />

4<br />

r <br />

1<br />

0 0 0 2 0 1 2 0<br />

r4<br />

r<br />

<br />

<br />

<br />

3<br />

A C D <br />

S 2<br />

<br />

<br />

0 1 1 0 1 1<br />

0 1 1 0 1<br />

<br />

2 1 0 0 0 0 <br />

With Algorithm 1, AS 2<br />

can be transformed to a ladder-type<br />

matrix shown above. Obviously, R( A ) 2 S 1<br />

holds.<br />

2<br />

With Gaussian elimination method we get Y 1/2 1 1<br />

T<br />

S 2<br />

<br />

which is a solu tion of A Y 0<br />

S2 S2<br />

. The solution is positive, so<br />

S is a minimal support of S-invariants.<br />

2<br />

With Algorithm 2, the parameters C,D are shown above too.<br />

Based on this, we get that C <br />

3 1 1<br />

T<br />

and the elements in<br />

Y <br />

are as follows:<br />

S 2<br />

2 0 1 0<br />

y det( D) 2; y det( D C<br />

) 1;<br />

S2:3 S2:1 1 3<br />

0 1 1 1<br />

S 2<br />

Similarly y det( D C<br />

) 2 .Thus we get<br />

<br />

Y 1 2 2<br />

S 2<br />

<br />

S 2 :2 2 3<br />

T<br />

and Y <br />

1Y<br />

S2<br />

S<br />

1 2<br />

T<br />

2<br />

2<br />

Eventually we get a S-invariant Y <br />

supported by S s , s , s .<br />

2 1 4 5<br />

1 0 0 2 2 0 T<br />

VII. CONCLUSIONS<br />

In this paper, after a deep research to th e properties of<br />

supports of S-invariants, a sufficient and necessary condition<br />

for a place s ubset to be a m inimal support of S-invariants is<br />

obtained. Based on the condition, two polynomial algorithms<br />

for the decidability of minimal supports of S-invariants and for<br />

the computation of an S-invariant supported by a given<br />

minimal support are presented.<br />

Compared to those existed methods for the computation of<br />

S-invariants, the algorithms presented in this paper have<br />

polynomial time complexity. And based on these algorithms,<br />

we can further give some effective algorithms for the S-<br />

coverability verification of workflow nets, as well as th e<br />

decidability of the existence of S-invariants.<br />

REFERENCES<br />

[1] Claude Girault, Rüdiger Valk. Petri Nets for <strong>Systems</strong> EngineeringA<br />

Guide to Modeling,Verification and Applications[M]. Springer-Verlag ,<br />

Berlin Heidelberg, 2003.<br />

[2] Wil van der Aalst, Christian Stahl. Modeling Business Processes: A Petri<br />

Net-Oriented Approach. MIT Press,May,2011.<br />

[3] T.Murata,”Petri nets:properties,analysis and application”, Proc.IEEE,<br />

vol.77, no.4, pp.541-579, 1989.<br />

[4] Zhehui Wu. Introduction to Petri net. Beijing: China Machine<br />

Press.2005.<br />

[5] Q.W.Ge, T.Tanida, and K.Onaga.Construction of a T-base and design of<br />

a periodic firint sequence of a Petri net. In Proc.8th Mathematical<br />

Programming symposium, Japan,pp.51-57,November 1987.<br />

[6] J.Martinez and M.Silva. A Simple and Fast Algorithm to Obtain All<br />

Invariants Of a Generalized Petri Nets[J] <strong>Proceedings</strong> of S econd<br />

European Workshop on Application and Theory of Petri Nets,Informatik<br />

Fachberichte 52,Springer Publishing Company,Berlin,1982<br />

[7] Maki Takata,Tadashi Matsumoto and Sciichiro Moro. A Direct Method<br />

to Derive All Generators of Solutions of a Matrix Equation in a P etri<br />

Net·Extended Fourier-Motzkin Method [J],the 2002 International<br />

Technical Conference on Circuits/systems,Computers and<br />

Communitions,2002.<br />

[8] M.Yamauchi, M.wakuda, S.Taoka, and T.Watanabe. A Fast and Space-<br />

Saving Algorithm for Computing Invariants of Petri Nets. <strong>Systems</strong>, Man,<br />

and Cybernetics, 1999. IEEE SMC '99,Vol 1,pages:866-871<br />

[9] Akihiro TAGUCHI , Atsushi IRIBOSHI, Satoshi TAOKA, and<br />

ToshimasaWATANABE. Siphon-Trap-Based Algorithms for Efficiently<br />

Computing Petri Net Invariants. IEICE Trans. Fundamentals,2005,<br />

E88–A(4):964-971<br />

[10] David C.Lay. Linear algebra and its applications. 4th Edition[M].<br />

Addison-Wesley , <strong>2012</strong>:12-124.<br />

[11] S.Tanimoto, M.Yamauchi,,T.Watanabe. Finding minimal siphons in<br />

general Petri nets[J].IEICE Trans.Fundamentals,1996,E79-A(11): 1817-<br />

1824.<br />

[12] Faming Lu. An algebraic method for the reachability analysis of Petri<br />

nets [D].Qingdao, China: ShanDong Universitry of Science and<br />

Technology. 2006.<br />

345

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!