27.03.2014 Views

SEKE 2012 Proceedings - Knowledge Systems Institute

SEKE 2012 Proceedings - Knowledge Systems Institute

SEKE 2012 Proceedings - Knowledge Systems Institute

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

p 1<br />

5<br />

t 5<br />

t 1<br />

p 6<br />

2<br />

p 9<br />

p 2<br />

p 5<br />

t 2<br />

4<br />

t 6<br />

r<br />

p 2<br />

3<br />

1 p 7<br />

t 3<br />

p 10 t 7<br />

r 3 p 8<br />

p 11 2<br />

t 4<br />

p 4<br />

r 1<br />

t 10<br />

4<br />

p 5 p 4<br />

p 16<br />

t 4 p 8 t 5 t 6<br />

p 6<br />

4<br />

p 1<br />

p 3 p 2<br />

t 1<br />

t 2 t 3<br />

p 15<br />

p 14 p 13<br />

p 7<br />

p<br />

t<br />

9 p 7<br />

10<br />

p 11<br />

t 8 p 12<br />

t 9<br />

t 8<br />

Fig. 2 Example weakly 2-compound siphon. 0<br />

= 1 + 2 - 3.<br />

Fig. 1. Example S 3 PR with stronglydependent siphon. η 3 = η 1 + η 2 .<br />

Fig. 2. Example weakly 2-compoundsiphon. η 0 = η 1 + η 2 − η 3 .<br />

TABLE I<br />

TYPES OF SIPHONS FOR THE NET IN FIG. 1<br />

SMS [S] η Set of places c<br />

S 1 {p 2 ,p 7 } [−t 1 + t 2 + t 6 − t 7 ] {p 9 ,p 10 ,p 3 ,p 6 } c 1 =[p 9 t 6 p 10 t 2 p 9 ]<br />

S 2 {p 3 , p 8 } [-t 2 + t 3 + t 7 − t 8 ] {p 10 ,p 11 ,p 4 ,p 7 } c 2 =[p 10 t 7 p 11 t 3 p 10 ]<br />

S 3 {p 2 ,p 3 ,p 7 ,p 8 } [−t 1 + t 3 + t 6 − t 8 ] {p 9 ,p 10 ,p 6 ,p 11 ,p 4 } c 3 = c 1 oc 2<br />

TABLE II<br />

FOUR SMS IN FIG. 2 AND THEIR η. η 4 = η 1 + η 2 − η 3 .<br />

SMS [S] η Set of places c<br />

S 1 {p 2 ,p 3 ,p 8 ,p 9 ,p 10 ,p 11 } [+t 2 − t 4 + t 8 − t 9 ] {p 4 ,p 12 ,p 13 ,p 14 ,p 15 } c 1 =[p 15 t 2 p 14 t 3 p 13 t 8 p 15 ]<br />

S 2 {p 3 ,p 4 ,p 7 ,p 8 ,p 9 ,p 10 } [+t 1 − t 3 + t 7 − t 10 ] {p 5 ,p 11 ,p 14 ,p 15 ,p 16 } c 2 =[p 14 t 4 p 16 t 1 p 15 t 2 p 14 ]<br />

S 3 {p 3 ,p 8 ,p 9 ,p 10 } [+t 2 − t 3 − t 4 + t 7 ] {p 4 ,p 11 ,p 14 ,p 15 } c 3 =[p 15 t 2 p 14 t 6 p 15 ]<br />

S 4 {p 2 , p 3 , p 4 , p 7 , p 8 , p 9 ,<br />

p 10 , p 11 }<br />

[+t 1 + t 8 − t 9 − t 10 ] {p 5 ,p 12 ,p 13 ,p 14 ,p 15 ,p 16 } c 4 = c 1 ⊕ c 2<br />

Thus, we prove the uniform formula for weakly n-<br />

compound siphons. It also holds for strongly dependent<br />

siphons as shown earlier. Thus, the uniform formula holds<br />

irrespective to whether the compound siphon is strongly or<br />

weakly. This further enhances the uniformity of the formula.<br />

A more complicated example in the next section illustrates<br />

this for a weakly 3-compound siphon.<br />

V. EXAMPLE<br />

This section employs Fig.3 to demonstrate Theorem 4. As<br />

shown in Tables III-VII, S, [S] and η for weakly compound<br />

siphons all share the same formula verifying Theorem 4.<br />

For strongly dependent siphons, the same formula also holds<br />

except S ij =[S ij ]=∅ , η ij =0,∀i ≠ j.<br />

VI. CONCLUSION<br />

In summary, we propose a uniform formula to compute<br />

SMS, their complementary set and characteristic T-vectors for<br />

both strongly and weakly n-compound siphons based on the<br />

same underlying physics. We further propose to generalize it<br />

to a compound siphon consisting of n basic siphons. This helps<br />

to retain the formula in brain without consulting the references<br />

and simplify the computation plus its implementation to reduce<br />

the lines of codes. Future work can be directed to large S 3 PR<br />

and more complicated systems.<br />

REFERENCES<br />

[1] Wang, Y., Kelly, T., Kudlur, M., Lafortune, S., and Mahlke, S.A.,<br />

“Gadara: Dynamic deadlock avoidance for multithreaded programsc In<br />

USENIX Symposium on Operating <strong>Systems</strong> Design and Implementation,<br />

2008.<br />

[2] Wang, Y., Kelly, T., Kudlur, M., Mahlke, S., and Lafortune, S., vThe<br />

application of supervisory control to deadlock avoidance in concurrent<br />

software “ In International Workshop on Discrete Event <strong>Systems</strong>, 2008.<br />

[3] T. Murata, “Petri nets: properties, analysis and application,” in <strong>Proceedings</strong><br />

of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.<br />

[4] Li, Z. W. and M. C. Zhou., ”Elementary Siphons of Petri Nets and Their<br />

Application to Deadlock Prevention in Flexible Manufacturing <strong>Systems</strong>,”<br />

IEEE Trans. Syst. Man Cybern. A., 34(1), 38-51, 2004.<br />

[5] D.Y. Chao, “Computation of elementary siphons in Petri nets for<br />

deadlock control,” Comp. J., (British Computer Society), vol. 49, no.<br />

4, pp. 470–479, 2006.<br />

[6] D. Y. Chao, ”Improved controllability test for dependent siphons in<br />

S 3 PR based on elementary siphons,” Asian Journal of Control, vol. 12,<br />

no. 3, pp. 377 – 391, doi:10.1002/asjc.217, 2010.<br />

[7] D. Y. Chao, Jiun-Ting Chen, Mike Y.J. Lee, and Kuo-Chiang Wu,<br />

”Controllability of Strongly and Weakly Dependent Siphons under<br />

Disturbanceless Control,” Intelligent Control and Automation, vol.2,<br />

no.4, pp. 310-319, 2011.<br />

361

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!