02.05.2014 Views

PENELOPE 2003 - OECD Nuclear Energy Agency

PENELOPE 2003 - OECD Nuclear Energy Agency

PENELOPE 2003 - OECD Nuclear Energy Agency

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.2. Inelastic collisions 93<br />

where N is the number of scattering centres (atoms or molecules) per unit volume. The<br />

stopping power S in and the energy straggling parameter Ω 2 in are defined by<br />

and<br />

S in = N σ (1)<br />

in = 〈W 〉<br />

λ in<br />

(3.84)<br />

Ω 2 in = N σ (2)<br />

in = 〈W 2 〉<br />

λ in<br />

. (3.85)<br />

Notice that the stopping power gives the average energy loss per unit path length 4 . The<br />

physical meaning of the straggling parameter is less direct. Consider a monoenergetic<br />

electron (or positron) beam of energy E that impinges normally on a foil of material<br />

of (small) thickness ds, and assume that the electrons do not scatter (i.e. they are<br />

not deflected) in the foil. The product Ω 2 in ds then gives the variance of the energy<br />

distribution of the beam after traversing the foil (see also section 4.2).<br />

The integrated cross sections σ (n)<br />

in<br />

σ (n)<br />

in<br />

can be calculated as<br />

= σ (n)<br />

dis,l + σ (n)<br />

dis,t + σ (n)<br />

clo . (3.86)<br />

The contributions from distant longitudinal and transverse interactions are<br />

σ (n)<br />

dis,l = 2πe4<br />

m e v 2 ∑<br />

k<br />

f k W n−1<br />

k<br />

ln<br />

(<br />

Wk Q − + 2m e c 2 )<br />

Θ(W<br />

Q − W k + 2m e c 2 max − W k ) (3.87)<br />

and<br />

σ (n)<br />

dis,t = 2πe4<br />

m e v 2 ∑<br />

k<br />

f k W n−1<br />

k<br />

{<br />

ln<br />

( 1<br />

1 − β 2 )<br />

− β 2 − δ F<br />

}<br />

Θ(W max − W k ), (3.88)<br />

respectively. Notice that for distant interactions W max<br />

positrons.<br />

The integrated cross sections for close collisions are<br />

= E, for both electrons and<br />

σ (n)<br />

clo = 2πe4 ∑<br />

m e v 2<br />

k<br />

f k<br />

∫ Wmax<br />

W k<br />

W n−2 F (±) (E, W ) dW. (3.89)<br />

In the case of electrons, the integrals in this formula are of the form<br />

∫<br />

J n (−) =<br />

W n−2 [1 +<br />

( ) W 2<br />

(1 − a)W<br />

−<br />

E − W E − W + aW 2 ]<br />

dW (3.90)<br />

E 2<br />

and can be calculated analytically. For the orders 0, 1 and 2 we have<br />

J (−)<br />

0 = − 1 W + 1<br />

E − W + 1 − a ( ) E − W<br />

E<br />

ln + aW W E , (3.91)<br />

2<br />

4 The term “stopping power” is somewhat misleading; in fact, S in has the dimensions of force.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!