21.06.2014 Views

Conformally Invariant Variational Problems. - SAM

Conformally Invariant Variational Problems. - SAM

Conformally Invariant Variational Problems. - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Thus<br />

⃗G ∗ ω S m−1(p) = 1<br />

|S m−1 |<br />

Observe that<br />

m−2<br />

∧<br />

m−2<br />

∑<br />

α,β=1<br />

∑<br />

(−1) j+1 s j ∧ l≠j ds l<br />

j=1<br />

= |Sm−3 |<br />

|S m−1 |<br />

< d⃗e 1 , ⃗ G > ∧ < d⃗e 2 , ⃗ G >= det<br />

s α s β < d⃗n α ,⃗e 1 > ∧ < d⃗n α ,⃗e 2 ><br />

< d⃗e 1 , ⃗ G > ∧ < d⃗e 2 , ⃗ G > ∧ω S m−3(s)<br />

(<br />

< G, ⃗ ⃗ )<br />

I ><br />

dvol ⃗Φ∗ g R m<br />

(X.53)<br />

(X.54)<br />

anddenotingΩtheclosedm−3−formonNΣ 2 whichisinvariant<br />

under the actionof SO(m−2) overthe fibers and whose integral<br />

over each fiber is equal to one 40 , combining (X.53) and (X.54),<br />

we have proved finally that 41<br />

⃗G ∗ ω S<br />

m−1 = m−2 (<br />

2π det < G, ⃗ ⃗ )<br />

I > dvol ⃗Φ∗ g ∧Ω (X.55)<br />

R m<br />

The form < G, ⃗ ⃗ I > is bilinear symmetric, if κ 1 , κ 2 are it’s eigenvalues,<br />

since 4κ 1 κ 2 ≤ (κ 1 + κ 2 ) 2 , we deduce the pointwise inequality<br />

⃗G ∗ ω S<br />

m−1 ≤ m−2<br />

tr g (< G,<br />

∣<br />

⃗ ⃗ I >)<br />

2<br />

∣ dvolΦ ⃗ ∗ g ∧Ω<br />

R m<br />

= m−2<br />

2π<br />

2π ∣ 2 ∣<br />

∣<br />

∣< G, ⃗ H ⃗ ⃗Φ > ∣ 2 dvol ⃗Φ∗ g ∧Ω<br />

R m<br />

(X.56)<br />

40 This means that Ω is the Thom class of the normal bundle NΣ 2 it coincides in particular<br />

with ω S m−3 in the coordinates s.<br />

41 where we are using the fact that |S m−3 |/|S m−1 | = (m−2)/2π.<br />

123

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!