21.06.2014 Views

Conformally Invariant Variational Problems. - SAM

Conformally Invariant Variational Problems. - SAM

Conformally Invariant Variational Problems. - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Accordingly, if φ lies in L ∞ , then it automatically lies in W 1,2 .<br />

Step 1. given two functions ã and ˜b in C0 ∞ (C), which is<br />

dense in W 1,2 (C), we first establish the estimate (VII.4) for<br />

˜φ := 1<br />

2π log 1 [ ]<br />

r ∗ ∂ x ã∂ y˜b−∂x˜b∂y ã . (VII.5)<br />

Owing to the translation-invariance, it suffices to show that<br />

We have<br />

˜φ(0) = − 1<br />

2π<br />

= − 1<br />

2π<br />

= 1<br />

2π<br />

|˜φ(0)| ≤ C 0 ‖∇ã‖ L2 (C) ‖∇˜b‖ L2 (C) .<br />

∫<br />

∫ 2π<br />

0 0<br />

∫ 2π ∫ +∞<br />

0<br />

logr ∂ x ã∂ y˜b−∂x˜b∂y ã<br />

R 2 ∫ ( ) ( )<br />

+∞<br />

log r ∂ ã ∂˜b − ∂ ã ∂˜b<br />

∂r ∂θ ∂θ ∂r<br />

0<br />

ã ∂˜b<br />

∂θ<br />

dr<br />

r dθ<br />

(VII.6)<br />

dr dθ<br />

Because ∫ 2π ∂˜b<br />

0 ∂θ dθ = 0, we may deduct from each circle ∂B r(0) a<br />

constant à ã chosen to have average ã r on ∂B r (0). Hence, there<br />

holds<br />

˜φ(0) = 1 ∫ 2π ∫ +∞<br />

[ã−ã r ] ∂˜b dr<br />

2π 0 0 ∂θ r dθ .<br />

ApplyingsuccessivelytheCauchy-SchwarzandPoincaréinequalities<br />

on the circle S 1 , we obtain<br />

⎛<br />

|˜φ(0)| ≤ 1 ∫ +∞<br />

(∫<br />

dr 2π<br />

) 1 ∫ |ã−ã r | 2 2 2π<br />

⎝<br />

∂˜b<br />

⎞ 1<br />

2 2<br />

⎠<br />

2π 0 r 0<br />

0 ∣∂θ∣<br />

≤ 1 ∫ ( ⎛<br />

+∞ ∫<br />

dr 2π<br />

∂ã<br />

2 )1 2 ∫ 2π<br />

⎝<br />

∂˜b<br />

⎞ 1<br />

2 2<br />

2π 0 r ∣<br />

0 ∂θ∣<br />

⎠<br />

0 ∣∂θ∣<br />

The sought after inequality (VII.6) may then be inferred from<br />

the latter via applying once more the Cauchy-Schwarz inequality.<br />

59

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!