21.06.2014 Views

Conformally Invariant Variational Problems. - SAM

Conformally Invariant Variational Problems. - SAM

Conformally Invariant Variational Problems. - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

We have moreover<br />

∇ es<br />

⃗ V N =<br />

= −<br />

2∑<br />

< ∇ esV ⃗ N ,⃗e k > ⃗e k =<br />

k=1<br />

2∑<br />

< dV ⃗ N ·e s ,⃗e k > ⃗e k<br />

k=1<br />

2∑<br />

< V ⃗ N ,d⃗e k ·e s > ⃗e k = −<br />

k=1<br />

2∑<br />

< V ⃗ N ,D es ⃗e k > ⃗e k<br />

k=1<br />

Combining this last identity with (X.81) gives<br />

2∑<br />

D es (∇ esV ⃗ N ) = −<br />

s=1<br />

2∑<br />

s,k=1<br />

D es ⃗e k<br />

⃗ I(⃗es ,⃗e k ) = −Ã(⃗ V N ) . (X.82)<br />

Now, since Φ ⃗ 0 +tV ⃗ T preserves infinitesimallythe surface Φ ⃗ 0 (Σ 2 )<br />

an since the Willmoreenergy is independent of the parametrization,<br />

one has<br />

d<br />

dt<br />

∫<br />

Σ 2 | ⃗ H ⃗Φ0 +t ⃗ V T | 2 dvol ( ⃗ Φ0 +t ⃗ V T ) ∗ g R m = 0 .<br />

In other words, tangent variations do not change the Willmore<br />

energy at the first order. Therefore we can assume V ⃗ = V ⃗ N and<br />

combining (X.79) with (X.80) and (X.82) gives finally if V ⃗ T = 0<br />

D ∂<br />

⃗H = 1<br />

∂t 2<br />

[<br />

∆ ⊥<br />

⃗ V N +Ã(⃗ V N )<br />

]<br />

. (X.83)<br />

Let (gij t ) ij := ( Φ+t ⃗ V) ⃗ ∗ g R m, a straightforwardcomputationgives<br />

in local coordinates<br />

]<br />

gij t = g ij +t<br />

[< ∂ xiV,∂xj ⃗ Φ ⃗ > + < ∂xjV,∂xi ⃗ Φ ⃗ > +o(t) ,<br />

from which we deduce<br />

det(gij t ) 2∑<br />

det(g ij ) −1 = 2<br />

k,j=1<br />

g jk < ∂ xk<br />

⃗ V,∂xj ⃗ Φ > +o(t) .<br />

137

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!