21.06.2014 Views

Conformally Invariant Variational Problems. - SAM

Conformally Invariant Variational Problems. - SAM

Conformally Invariant Variational Problems. - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Lemma VII.1. Let v be a harmonic function on D 2 . For every<br />

point p in D 2 , the function<br />

ρ ↦−→ 1 ∫<br />

|∇v| 2<br />

ρ 2<br />

is increasing.<br />

B ρ (p)<br />

Proof. Note first that<br />

[ ]<br />

d 1<br />

|∇v|<br />

dρ ρ<br />

∫B 2 = − 2 ∫<br />

|∇v| 2 + 1 ∫<br />

|∇v| 2 .<br />

2<br />

ρ (p) ρ 3 B ρ (p) ρ 2 ∂B ρ (p)<br />

(VII.11)<br />

Denotebyv theaverageofv on∂B ρ (p): v := |∂B ρ (p)| −1∫ ∂B ρ (p) v.<br />

Then, there holds<br />

∫<br />

0 =<br />

B ρ (p)<br />

This implies that<br />

∫<br />

(v −v) ∆v = −<br />

B ρ (p)<br />

∫<br />

|∇v| 2 +<br />

∂B ρ (p)<br />

(v −v) ∂v<br />

∂ρ<br />

∫ ( )1 (<br />

2 ∫ 1<br />

|∇v| 2 1<br />

≤ |v −v|<br />

ρ B ρ (p) ρ<br />

∫∂B 2 ∂v<br />

2 )1 2<br />

2 ∣<br />

ρ (p) ∂B ρ (p) ∂ρ∣<br />

.<br />

(VII.12)<br />

In Fourier space, v satisfies v = ∑ ∑<br />

n∈Z a ne inθ and v − v =<br />

n∈Z<br />

a ∗ n e inθ . Accordingly,<br />

1<br />

2πρ<br />

∫<br />

∂B ρ (p)<br />

|v−v| 2 = ∑ n∈Z ∗ |a n | 2 ≤ ∑ n∈Z ∗ |n| 2 |a n | 2 ≤ 1<br />

2π<br />

Combining the latter with (VII.12) then gives<br />

∫ ( ∫<br />

1<br />

|∇v| 2 ≤<br />

ρ B ρ (p) ∂B ρ (p)<br />

1∂v<br />

∣ρ∂θ∣<br />

2 )1 2<br />

( ∫ ∂v<br />

∣<br />

∂B ρ (p) ∂ρ∣<br />

∫ 2π<br />

0<br />

2 )1 2<br />

∂v<br />

∣∂θ∣<br />

.<br />

2<br />

.<br />

✷<br />

(VII.13)<br />

dθ .<br />

62

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!