21.06.2014 Views

Conformally Invariant Variational Problems. - SAM

Conformally Invariant Variational Problems. - SAM

Conformally Invariant Variational Problems. - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Then the following identity holds<br />

e −2λ ∂ z<br />

(e 2λ < H, ⃗ H ⃗ )<br />

0 > =< H,∂ ⃗ zH ⃗ > + < H0 ⃗ ,∂ zH ⃗ > .<br />

Thus<br />

Proof of lemma X.5. Using (X.113) we obtain<br />

< ∂ zH0 ⃗ , H ⃗ )]<br />

>= 2<br />

〈∂ z<br />

[∂ z<br />

(e −2λ ∂ zΦ ⃗ , H ⃗ 〉<br />

)]<br />

= 2<br />

〈∂ z<br />

[∂ z<br />

(e −2λ ∂ zΦ ⃗ , H ⃗ 〉<br />

.<br />

(X.118)<br />

✷<br />

< ∂ z<br />

⃗ H0 , ⃗ H ><br />

]<br />

= −4<br />

〈∂ z<br />

[∂ z λ e −2λ ∂ zΦ ⃗ , H ⃗ 〉<br />

+<br />

〈<br />

= −2∂ z λ ⃗H0 , H〉<br />

⃗ 〉<br />

+<br />

〈∂ zH, ⃗ H ⃗<br />

〈∂ z<br />

[ e<br />

−2λ<br />

.<br />

2<br />

] 〉<br />

∆Φ<br />

⃗ , H ⃗<br />

This last identityimpliesthe Codazzi-Mainardiidentity(X.118)<br />

and lemma X.5 is proved.<br />

✷<br />

Proof of theorem X.7. Du to lemma X.3, as explained in<br />

remark X.2, it suffices to prove in conformal parametrization<br />

the identity (X.103). First of all we observe that<br />

]))<br />

4e −2λ R<br />

(π ⃗n<br />

(∂ z<br />

[π ⃗n (∂ zH) ⃗<br />

[<br />

= e −2λ π ⃗n<br />

(div π ⃗n (∇H)<br />

⃗ ])<br />

= ∆ ⊥<br />

⃗ H<br />

(X.119)<br />

154

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!