21.06.2014 Views

Conformally Invariant Variational Problems. - SAM

Conformally Invariant Variational Problems. - SAM

Conformally Invariant Variational Problems. - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

R m is given by ∇ X σ := π T (dσ ·X) where π T is the orthogonal<br />

projection onto the tangent plane. The Levi-Civita connection<br />

moreover is symmetric 57 (see [doC2] theorem 3.6 chap. 2) hence<br />

we have in particular<br />

[⃗e 1 ,⃗e 2 ] = ∇ e1 ⃗e 2 −∇ e2 ⃗e 1 = π T (d⃗e 2 ·e 1 −d⃗e 1 ·e 2 )<br />

(X.136)<br />

Since⃗e 1 and⃗e 2 have unit length, the tangentialprojectionof d⃗e 1<br />

(resp. d⃗e 2 ) are oriented along ⃗e 2 (resp. ⃗e 1 ). So we have<br />

⎧<br />

⎨ π T (d⃗e 2 ·e 1 ) =< d⃗e 2 ,⃗e 1 > ·e 1 ⃗e 1<br />

(X.137)<br />

⎩<br />

π T (d⃗e 1 ·e 2 ) =< d⃗e 1 ,⃗e 2 > ·e 2 ⃗e 2<br />

Combining (X.135), (X.136) and (X.137) gives then<br />

⎧<br />

⎨ de ∗ 1 (e 1,e 2 ) = − < d⃗e 2 ,⃗e 1 > ·e 1<br />

⎩<br />

de ∗ 2(e 1 ,e 2 ) =< d⃗e 1 ,⃗e 2 > ·e 2<br />

(X.138)<br />

Equation (X.133) gives<br />

⎧<br />

⎨ − < d⃗e 2 ,⃗e 1 > ·e 1 = (∗ g dλ,e 1 ) = −dλ·e 2<br />

(X.139)<br />

⎩<br />

< d⃗e 1 ,⃗e 2 > ·e 2 = (∗ g dλ,e 2 ) = dλ·e 1<br />

Thus combining (X.138) and (X.139) gives then<br />

⎧<br />

⎨ de ∗ 1 = −dλ·e 2 e ∗ 1 ∧e∗ 2 = dλ∧e∗ 1<br />

⎩<br />

de ∗ 2 = dλ·e 1 e ∗ 1 ∧e ∗ 2 = dλ∧e ∗ 2 .<br />

(X.140)<br />

We have thus proved at the end<br />

⎧<br />

⎨ d ( e −λ e1) ∗ = 0<br />

⎩<br />

d ( ) (X.141)<br />

e −λ e ∗ 2 = 0<br />

57 We recall that a connection ∇ on the tangent bundle of a manifold M m is symmetric<br />

if for any pair of tangent fields X and Y one has<br />

T(X,Y) := ∇ X Y −∇ Y X −[X,Y] = 0 .<br />

161

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!