28.11.2012 Views

Exact Solutions and Scalar Fields in Gravity - Instituto Avanzado de ...

Exact Solutions and Scalar Fields in Gravity - Instituto Avanzado de ...

Exact Solutions and Scalar Fields in Gravity - Instituto Avanzado de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ADAPTIVE CALCULATION OF A<br />

COLLAPSING MOLECULAR CLOUD<br />

CORE: THE JEANS CONDITION<br />

Leonardo Di G. Sigalotti<br />

<strong>Instituto</strong> Venezolano <strong>de</strong> Investigaciones Científicas (IVIC)<br />

Carretera Panamericana Km. 11, Altos <strong>de</strong> Pipe, Estado Mir<strong>and</strong>a, Venezuela<br />

Jaime Klapp<br />

<strong>Instituto</strong> Nacional <strong>de</strong> Investigaciones Nucleares<br />

Ocoyoacac 52045, Estado <strong>de</strong> México, México<br />

Abstract In 1997 Truelove et al. <strong>in</strong>troduced the Jeans condition to <strong>de</strong>term<strong>in</strong>e<br />

what level of spatial resolution is nee<strong>de</strong>d to avoid artificial fragmentation<br />

dur<strong>in</strong>g protostellar collapse calculations. They first found us<strong>in</strong>g a<br />

Cartesian co<strong>de</strong> based on an adaptive mesh ref<strong>in</strong>ement (AMR) technique<br />

that a Gaussian cloud mo<strong>de</strong>l collapsed isothermally to form a s<strong>in</strong>gular<br />

filament rather than a b<strong>in</strong>ary or quadruple protostellar system as predicted<br />

by previous calculations. Recently Boss et al. <strong>in</strong> 2000 us<strong>in</strong>g a<br />

different hydrodynamics co<strong>de</strong> with high spatial resolution reproduced<br />

the filamentary collapse solution of Truelove et al., imply<strong>in</strong>g that high<br />

resolution coupled with the Jeans condition is necessary to perform reliable<br />

calculations of the isothermal protostellar collapse. Here we recalculate<br />

the isothermal Gaussian cloud mo<strong>de</strong>l of Truelove et al. <strong>and</strong> Boss<br />

et al. us<strong>in</strong>g a completely different co<strong>de</strong> based on zoom<strong>in</strong>g coord<strong>in</strong>ates<br />

to achieve the required high spatial resolution. We follow the collapse<br />

through 7 or<strong>de</strong>rs of magnitu<strong>de</strong> <strong>in</strong>crease <strong>in</strong> <strong>de</strong>nsity <strong>and</strong> reproduce the<br />

filamentary solution. With the zoom<strong>in</strong>g coord<strong>in</strong>ates, we are allowed to<br />

perform an adaptive calculation with a much lower computational cost<br />

than the AMR technique <strong>and</strong> other grid re<strong>de</strong>f<strong>in</strong>ition methods.<br />

Keywords: Molecular collapse, Newtonian co<strong>de</strong>s, Jeans condition.<br />

1. INTRODUCTION<br />

Observations of young stars have revealed a frequency of b<strong>in</strong>ary companions<br />

that is at least comparable to that found for pre–ma<strong>in</strong>–sequence<br />

[1] <strong>and</strong> ma<strong>in</strong>–sequence [2] stars. In addition, the <strong>de</strong>tection of multiplicity<br />

<strong>Exact</strong> <strong>Solutions</strong> <strong>and</strong> <strong>Scalar</strong> <strong>Fields</strong> <strong>in</strong> <strong>Gravity</strong>: Recent Developments<br />

Edited by Macias et al., Kluwer Aca<strong>de</strong>mic/Plenum Publishers, New York, 2001 223

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!