28.11.2012 Views

Exact Solutions and Scalar Fields in Gravity - Instituto Avanzado de ...

Exact Solutions and Scalar Fields in Gravity - Instituto Avanzado de ...

Exact Solutions and Scalar Fields in Gravity - Instituto Avanzado de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

292 EXACT SOLUTIONS AND SCALAR FIELDS IN GRAVITY<br />

<strong>in</strong>g <strong>in</strong>terior shell can produce an anti–dragg<strong>in</strong>g phenomenon, an example<br />

of which was also given <strong>in</strong> [7]. But all these effects are only caused by<br />

the somewhat unphysical properties of the massless, charged shell, which<br />

e.g. violates most energy conditions.<br />

4.3. RESULTS EXACT IN MASS M AND<br />

CHARGE Q<br />

As already remarked, the explicit formulas for the magnetic fields B<br />

<strong>and</strong> for the dragg<strong>in</strong>g functions A <strong>in</strong> the case of general values M <strong>and</strong><br />

are too complicated for extract<strong>in</strong>g much obvious physical <strong>in</strong>terpretation.<br />

Therefore we restrict ourselves here to a discussion of only two special,<br />

physically <strong>in</strong>terest<strong>in</strong>g cases.<br />

We observe that <strong>in</strong> the case II all 8 <strong>in</strong>tegration constants are proportional<br />

to the expression appear<strong>in</strong>g <strong>in</strong> the energy<br />

conditions (16). Therefore, the magnetic field <strong>and</strong> the dragg<strong>in</strong>g<br />

function are zero for <strong>and</strong> change sign if changes sign,<br />

e.g. change from dragg<strong>in</strong>g to anti–dragg<strong>in</strong>g. This emphasizes the importance<br />

of the discussion of the energy conditions for the mass shell<br />

<strong>in</strong> Sec. 2. A similar behavior shows up <strong>in</strong> the analysis of the Thirr<strong>in</strong>g<br />

problem with cosmological boundary conditions [9].<br />

The collapse of our two–shell system, i.e. the appearance of a horizon,<br />

sets <strong>in</strong> for It turns out that then <strong>in</strong> both cases I <strong>and</strong> II<br />

we have <strong>and</strong> We see that the important<br />

results by Brill <strong>and</strong> Cohen [8] that <strong>in</strong>si<strong>de</strong> a rotat<strong>in</strong>g collaps<strong>in</strong>g mass<br />

shell one has total dragg<strong>in</strong>g of the <strong>in</strong>ertial systems, transfers also to our<br />

highly charged two–shell system, <strong>and</strong> we have a complete realization<br />

of Machian expectations: only the rotation relative to the “universe”<br />

counts. Moreover, all “physical” magnetic fields vanish <strong>in</strong>si<strong>de</strong> the mass<br />

shell. In the exterior region the essential non–zero <strong>in</strong>tegration<br />

constant <strong>in</strong> the collapse limit is <strong>and</strong> one gets exactly<br />

the Kerr–Newman field <strong>in</strong> lowest or<strong>de</strong>r of<br />

References<br />

[1]<br />

[2]<br />

[3]<br />

[4]<br />

[5]<br />

[6]<br />

[7]<br />

K.D. Hofmann, Z. Phys. 166 (1962) 567.<br />

J. Cohen, Phys. Rev. 148 (1966) 1264.<br />

J. Ehlers <strong>and</strong> W. R<strong>in</strong>dler, Phys. Lett. A32 (1970) 257.<br />

J. Ehlers <strong>and</strong> W. R<strong>in</strong>dler, Phys. Rev. D4 (1971) 3543.<br />

J. Cohen, J. Tiomno, <strong>and</strong> R. Wald, Phys. Rev. D7 (1973) 998.<br />

M. K<strong>in</strong>g <strong>and</strong> H. Pfister, Phys. Rev. D (to be published).<br />

C. Briggs, J. Cohen, G. DeWoolfson, <strong>and</strong> L. Kegeles, Phys. Rev. D23 (1981)<br />

1235.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!