28.11.2012 Views

Exact Solutions and Scalar Fields in Gravity - Instituto Avanzado de ...

Exact Solutions and Scalar Fields in Gravity - Instituto Avanzado de ...

Exact Solutions and Scalar Fields in Gravity - Instituto Avanzado de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

REFERENCES 13<br />

be shown that the analog of the Newtonian result that straight l<strong>in</strong>es parallel<br />

to the axis of rotation have at most two po<strong>in</strong>ts of <strong>in</strong>tersection with<br />

the bound<strong>in</strong>g 2-surface (we may call this “vertical convexity” for short)<br />

also holds for the Kramer solution. Obviously, we have to generalize<br />

appropriately the concept of “straight l<strong>in</strong>e parallel to the axis”; we do<br />

it <strong>in</strong> the obvious way, by consi<strong>de</strong>r<strong>in</strong>g geo<strong>de</strong>sics which <strong>in</strong>tersect the equatorial<br />

plane orthogonally <strong>and</strong> possess a constant azimuthal coord<strong>in</strong>ate.<br />

Once this is done, vertical convexity can be proven, by look<strong>in</strong>g at how<br />

the pressure varies along such geo<strong>de</strong>sics, <strong>and</strong> mak<strong>in</strong>g use of the remarkable<br />

fact that the pressure is harmonic (for a 2-dimensional flat-space<br />

Laplacian) <strong>in</strong> the Kramer solution.<br />

Acknowledgments<br />

It is for me an honor <strong>and</strong> a pleasure to participate <strong>in</strong> the celebration<br />

for Prof. Dehnen <strong>and</strong> Prof. Kramer. I thank Dr. T. Matos for<br />

his <strong>in</strong>vitation to do so. The work <strong>de</strong>scribed here has been or is currently<br />

supported by Projects PB89-0142, PB92-0183, PB95-0371, <strong>and</strong><br />

PB98-0772 of Dirección General <strong>de</strong> Enseñanza Superior e Investigatión<br />

Científica, Spa<strong>in</strong>. I am <strong>in</strong><strong>de</strong>bted to other members of some of those<br />

Projects (L. Fernán<strong>de</strong>z-Jambr<strong>in</strong>a, L.M. González-Romero, C. Hoenselaers,<br />

F. Navarro-Lérida, <strong>and</strong> M.J. Pareja) for discussions.<br />

References<br />

[1] H. Lamb, Hydrodynamics, Dover, New York, 1945.<br />

[2] S. Ch<strong>and</strong>rasekhar, Ellipsoidal Figures of Equilibrium, Dover, New York, 1987.<br />

[3] H. Po<strong>in</strong>caré, Acta. Math. 7 (1885) 259.<br />

[4] A.B. Basset, Amer. J. Math. 11 (1889) 172.<br />

[5] F.J. Ch<strong>in</strong>ea, Ann. Phys. (Leipzig) 9 (2000) SI–38.<br />

[6] L. Lichtenste<strong>in</strong>, Gleichgewichtsfiguren rotieren<strong>de</strong>r Flüssigkeiten, Spr<strong>in</strong>ger, Berl<strong>in</strong>,<br />

1933.<br />

[7] H.D. Wahlquist, Phys. Rev. 172 (1968) 1291.<br />

[8] F.J. Ch<strong>in</strong>ea <strong>and</strong> L.M. González–Romero, Class. Quantum Grav. 7 (1990) L99.<br />

[9] F.J. Ch<strong>in</strong>ea <strong>and</strong> L.M. González–Romero, Class. Quantum Grav. 9 (1992) 1271.<br />

[10] J.M.M. Senovilla, Class. Quantum Grav. 9 (1992) L167; F.J. Ch<strong>in</strong>ea, Class.<br />

Quantum Grav. 10, 2539 (1993); A. García, Class. Quantum Grav. 11 (1994)<br />

L45.<br />

[11] F.J. Ernst, Phys. Rev. 167 (1968) 1175.<br />

[12] D. Kramer <strong>and</strong> G. Neugebauer, Commun. Math. Phys. 10 (1968) 132.<br />

[13] D. Kramer, Class. Quantum Grav. 1 (1984) L3; Astron. Nach. 307 (1986) 309.<br />

[14] F.J. Ch<strong>in</strong>ea <strong>and</strong> M.J. Pareja, Class. Quantum Grav. 16 (1999) 3823.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!