03.12.2012 Views

PERCOLATION AND DISORDERED SYSTEMS Geoffrey GRIMMETT

PERCOLATION AND DISORDERED SYSTEMS Geoffrey GRIMMETT

PERCOLATION AND DISORDERED SYSTEMS Geoffrey GRIMMETT

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

204 <strong>Geoffrey</strong> Grimmett<br />

000 111 000 111 000 111<br />

000 111 000 111<br />

000 111<br />

000 111<br />

000 111 000 111 000 111<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

000 111<br />

000 111<br />

000 111<br />

000 111<br />

000 111 000 111 000 111 000 111<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

000 111<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

000 111 000 111 000 111 000 111 000 111<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

000 111<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

000 111 01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

000 111<br />

000 111 000 111 000 111 000 111<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

000 111 01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

0<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

1 01<br />

01<br />

01<br />

01<br />

000 111 000 111 000 111<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

000 111 000 111 000 111 000 111 000 111 000 111<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

01<br />

Fig. 7.6. An illustration of the first two steps in the construction of the event<br />

{0 is occupied}, when these steps are successful. Each hatched square is a seed.<br />

Since we are working with edge-sets Ej rather than with vertex-sets, it<br />

will be useful to have some corresponding notation. Two edges e, f are called<br />

adjacent, written e ≈ f, if they have exactly one common endvertex. This<br />

adjacency relation defines a graph. Paths in this graph are said to be α-open<br />

if X(e) < α for all e lying in the path. The exterior edge-boundary ∆eE of<br />

an edge-set E is the set of all edges f ∈ E3 \ E such that f ≈ e for some<br />

e ∈ E.<br />

For j = 1, 2, 3 and σ = ±, let Lσ j be an automorphism of L3 which<br />

preserves the origin and maps e1 = (1, 0, 0) onto σej; we insist that L + 1 is the<br />

identity. We now define E2 as follows. Consider the set of all paths π lying<br />

within the region<br />

B ′ �<br />

�<br />

1 = B(n) ∪ L σ� �<br />

j T(m, n) �<br />

1≤j≤3<br />

σ=±<br />

such that<br />

(a) the first edge f of π lies in ∆eE1 and is (β1(f) + δ)-open, and<br />

(b) all other edges lie outside E1 ∪ ∆eE1 and are p-open.<br />

We define E2 = E1 ∪ F1 where F1 is the set of all edges in the union of such<br />

paths π. We say that ‘the second step is successful’ if, for each j = 1, 2, 3<br />

and σ = ±, there is an edge in E2 having an endvertex in Kσ j (m, n), where<br />

K σ �<br />

j (m, n) = z ∈ L σ� �<br />

j T(n) :〈z, z + σej〉 is p-open, and z + σej lies<br />

in some seed lying within L σ� �<br />

j T(m, n) �<br />

.<br />

The corresponding event is illustrated in Figure 7.6.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!