14.12.2012 Views

Complex Analysis - Maths KU

Complex Analysis - Maths KU

Complex Analysis - Maths KU

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

204 Chapter 4 Elementary Functions<br />

and 5 − 2 √ 6 > 0, it hasan argument of π/2, and so:<br />

��<br />

z = −i log 5 − 2 √ � � � �<br />

6 i = −i loge 5 − 2 √ � �<br />

π<br />

6 + i<br />

2 +2nπ<br />

��<br />

(4n +1)π<br />

�<br />

z = − i loge 5 − 2<br />

2<br />

√ or<br />

�<br />

6<br />

(14)<br />

for n =0,±1, ±2, ... . Therefore, we have shown that if sin z = 5, then z<br />

isone of the valuesgiven in (13) or (14).<br />

Modulus The modulusof a complex trigonometric function can also be<br />

helpful in solving trigonometric equations. To find a formula in terms of x<br />

and y for the modulus of the sine and cosine functions, we first express these<br />

functions in terms of their real and imaginary parts. If we replace the symbol<br />

z with the symbol x + iy in the expression for sin z in (4), then we obtain:<br />

sin z = e−y+ix − ey−ix =<br />

2i<br />

e−y (cos x + i sin x) − ey (cos x − i sin x)<br />

� � � �<br />

2i<br />

y −y<br />

y −y<br />

e + e e − e<br />

=sinx<br />

+ i cos x<br />

.<br />

2<br />

2<br />

(15)<br />

Since the real hyperbolic sine and cosine functions are defined by sinh y =<br />

ey − e−y 2<br />

and cosh y = ey + e−y 2<br />

we can rewrite (15) as<br />

sin z =sinxcosh y + i cos x sinh y. (16)<br />

A similar computation enablesusto expressthe complex cosine function in<br />

termsof itsreal and imaginary partsas:<br />

cos z = cos x cosh y − i sin x sinh y. (17)<br />

We now use (16) and (17) to derive formulasfor the modulusof the complex<br />

sine and cosine functions. From (16) we have:<br />

�<br />

|sin z| = sin 2 x cosh 2 y + cos2 x sinh 2 y.<br />

This formula can be simplified using the identities cos2 x +sin 2 x = 1 and<br />

cosh 2 y =1+sinh 2 y for the real trigonometric and hyperbolic functions:<br />

or<br />

�<br />

|sin z| = sin 2 x � 1 + sinh 2 y � + cos2 x sinh 2 y<br />

�<br />

= sin 2 x + � cos2 x +sin 2 x � sinh 2 y,<br />

�<br />

|sin z| = sin 2 x + sinh 2 y. (18)<br />

After a similar computation we obtain the following expression for the modulusof<br />

the complex cosine function:<br />

�<br />

|cos z| = cos2 x + sinh 2 y. (19)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!