14.12.2012 Views

Complex Analysis - Maths KU

Complex Analysis - Maths KU

Complex Analysis - Maths KU

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

276 Chapter 5 Integration in the <strong>Complex</strong> Plane<br />

In addition, let L be the length of C and let δ denote the shortest distance<br />

between points on C and the point z0. Thus for all points z on C we have<br />

|z − z0| ≥δ or<br />

1 1<br />

2 ≤ .<br />

|z − z0| δ2 Furthermore, if we choose |∆z| ≤ 1<br />

2δ, then by (10) of Section 1.2,<br />

and so,<br />

� �<br />

�<br />

�<br />

�<br />

Now,<br />

C<br />

|z − z0 − ∆z| ≥||z − z0|−|∆z||≥δ −|∆z| ≥ 1<br />

2 δ<br />

1 2<br />

≤<br />

|z − z0 − ∆z| δ .<br />

�<br />

f(z)<br />

f(z)<br />

dz −<br />

(z − z0) 2<br />

C (z − z0 − ∆z)(z − z0) dz<br />

�<br />

�<br />

�<br />

�<br />

� �<br />

�<br />

= �<br />

−∆zf(z)<br />

�<br />

dz<br />

(z − z0 − ∆z)(z − z0) 2<br />

C<br />

�<br />

�<br />

�<br />

�<br />

≤ 2ML|∆z|<br />

δ 3<br />

.<br />

Because the last expression approaches zero as ∆z → 0, we have shown that<br />

f ′ f(z0 +∆z) − f(z0)<br />

(z0) = lim<br />

=<br />

∆z→0 ∆z<br />

1<br />

�<br />

f(z)<br />

dz,<br />

2πi C (z − z0) 2<br />

which is (6) for n =1. ✎<br />

Like (1), formula (6) can be used to evaluate integrals.<br />

EXAMPLE 3 Using Cauchy’s Integral Formula for Derivatives<br />

�<br />

Evaluate<br />

C<br />

z +1<br />

z4 dz, where C is the circle |z| =1.<br />

+2iz3 Solution Inspection of the integrand shows that it is not analytic at z =0<br />

and z = −2i, but only z = 0 lies within the closed contour. By writing the<br />

integrand as<br />

z +1<br />

z4 =<br />

+2iz3 z +1<br />

z +2i<br />

z 3<br />

we can identify, z0 =0,n = 2, and f(z) =(z +1)/ (z +2i). The quotient<br />

rule gives f ′′ (z) =(2− 4i)/(z +2i) 3 and so f ′′ (0) = (2i − 1)/4i. Hence from<br />

(6) we find<br />

�<br />

C<br />

z +1<br />

z4 2πi<br />

dz =<br />

+4z3 2! f ′′ (0) = − π π<br />

+<br />

4 2 i.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!