14.12.2012 Views

Complex Analysis - Maths KU

Complex Analysis - Maths KU

Complex Analysis - Maths KU

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

382 Chapter 6 Series and Residues<br />

1<br />

y<br />

Figure 6.25 Graph of f in Example 4<br />

x<br />

EXAMPLE 4 Fourier Transform<br />

Find the Fourier transform of f(x) =e −|x| .<br />

Solution The graph of f,<br />

⎧<br />

⎨ e<br />

f(x) =<br />

⎩<br />

x , x < 0<br />

e−x , (21)<br />

, x ≥ 0<br />

is given in Figure 6.25. From the expanded definition of f in (21), it follows<br />

from (19) that the Fourier transform of f is<br />

� 0<br />

F{f(x)} = e x e iαx � ∞<br />

dx + e −x e iαx dx = I1 + I2. (22)<br />

−∞<br />

We shall begin by evaluating the improper integral I2.One of several ways of<br />

proceeding is to write:<br />

I2 = lim<br />

b→∞<br />

=<br />

� b<br />

0<br />

1<br />

αi − 1 lim<br />

b→∞<br />

e −x(1−αi) dx = lim<br />

b→∞<br />

0<br />

e −x(1−αi)<br />

αi − 1<br />

�<br />

�<br />

�<br />

�<br />

� e −b cos bα + ie −b sin bα − 1 � =<br />

b<br />

0<br />

e<br />

= lim<br />

b→∞<br />

−b(1−αi) − 1<br />

1<br />

1 − αi .<br />

αi − 1<br />

Here we have used limb→∞ e −b cos bα = 0 and limb→∞ e −b sin bα = 0 for b>0.<br />

The integral I1 can be evaluate in the same manner to obtain<br />

I1 =<br />

1<br />

1+αi .<br />

Adding I1 and I2 gives the value of the Fourier transform (22):<br />

F{f(x)} =<br />

1 1<br />

+<br />

1 − αi 1+αi<br />

or F (α) = 2<br />

.<br />

1+α2 EXAMPLE 5 Inverse Fourier Transform<br />

Find the inverse Fourier transform of F (α) =<br />

2<br />

.<br />

1+α2 Solution The idea here is to recover the function f in Example 4 from the<br />

inverse transform (20),<br />

F −1 {F (α)} = 1<br />

� ∞<br />

2π<br />

2<br />

1+α2 e−iαx dα = f(x). (23)<br />

−∞<br />

To evaluate � (23), we let z be a complex variable and introduce the contour<br />

1<br />

integral<br />

π(1 + z2 ) e−izxdz.Note that the integrand has simple poles at<br />

C

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!