14.12.2012 Views

Complex Analysis - Maths KU

Complex Analysis - Maths KU

Complex Analysis - Maths KU

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Important<br />

f(z) =<br />

☞<br />

6.2 Taylor Series 315<br />

be carried out term by term:<br />

�<br />

�∞<br />

ak(z − z0) k ∞�<br />

dz =<br />

k=0<br />

=<br />

k=0<br />

∞�<br />

k=0<br />

ak<br />

�<br />

(z − z0) k dz<br />

ak<br />

k +1 (z − z0) k+1 + constant.<br />

The ratio test given in Theorem 6.4 can be used to be prove that both<br />

∞�<br />

ak(z − z0) k<br />

and<br />

∞� ak<br />

k+1<br />

(z − z0)<br />

k +1<br />

k=0<br />

k=0<br />

have the same circle of convergence | z − z0| = R.<br />

Taylor Series Suppose a power series represents a function f within<br />

| z − z0| = R, that is,<br />

∞�<br />

k=0<br />

ak(z − z0) k = a0 + a1(z − z0)+a2(z − z0) 2 + a3(z − z0) 3 + ··· . (1)<br />

It follows from Theorem 6.7 that the derivatives of f are the series<br />

f ′ ∞�<br />

(z) =<br />

f ′′ (z) =<br />

f ′′′ (z) =<br />

k=1<br />

akk(z − z0) k−1 = a1 +2a2(z − z0)+3a3(z − z0) 2 + ··· , (2)<br />

∞�<br />

akk(k − 1)(z − z0) k−2 =2· 1a2 +3· 2a3(z − z0)+··· , (3)<br />

k=2<br />

∞�<br />

akk(k − 1) (k − 2) (z − z0) k−3 =3· 2 · 1a3 + ··· , (4)<br />

k=3<br />

and so on.Since the power series (1) represents a differentiable function f<br />

within its circle of convergence | z − z0| = R, where R is either a positive<br />

number or infinity, we conclude that a power series represents an analytic<br />

function within its circle of convergence.<br />

There is a relationship between the coefficients ak in (1) and the derivatives<br />

of f.Evaluating (1), (2), (3), and (4) at z = z0 gives<br />

f(z0) =a0, f ′ (z0) =1!a1, f ′′ (z0) =2!a2, and f ′′′ (z0) =3!a3,<br />

respectively.In general, f (n) (z0) =n! an, or<br />

an = f (n) (z0)<br />

,n≥ 0. (5)<br />

n!<br />

When n = 0 in (5), we interpret the zero-order derivative as f(z0) and 0! = 1<br />

so that the formula gives a0 = f(z0). Substituting (5) into (1) yields<br />

f(z) =<br />

∞�<br />

k=0<br />

f (k) (z0)<br />

k!<br />

(z − z0) k . (6)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!