27.07.2021 Views

The Delft Sand, Clay & Rock Cutting Model, 2019a

The Delft Sand, Clay & Rock Cutting Model, 2019a

The Delft Sand, Clay & Rock Cutting Model, 2019a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A Wedge in Dry <strong>Sand</strong> <strong>Cutting</strong>.<br />

<strong>The</strong> normal force N3 and the shear force S3 can be combined to a resulting grain force K3.<br />

2 2<br />

3 3 3<br />

K N S<br />

(11-4)<br />

<strong>The</strong> forces acting on a straight blade C-D when cutting soil (see Figure 11-6), can be distinguished as:<br />

11. A force normal to the blade N4, resulting from the effective grain stresses.<br />

12. A shear force S4 as a result of the soil/steel friction N4·tan(.<br />

<strong>The</strong> normal force N4 and the shear force S4 can be combined to a resulting grain force K4.<br />

2 2<br />

4 4 4<br />

K N S<br />

(11-5)<br />

<strong>The</strong> horizontal equilibrium of forces on the layer cut:<br />

F h K 1 sin( ) I cos( ) K 2 sin( ) 0<br />

(11-6)<br />

<strong>The</strong> vertical equilibrium of forces on the layer cut:<br />

F v K 1 cos( ) I sin( ) G 1 K 2 cos( ) 0<br />

(11-7)<br />

<strong>The</strong> force K1 on the shear plane is now:<br />

K<br />

1<br />

G1<br />

sin( ) Icos( )<br />

<br />

sin( )<br />

(11-8)<br />

<strong>The</strong> force K2 on the pseudo blade is now:<br />

K<br />

2<br />

G1<br />

sin( ) Icos( )<br />

<br />

sin( )<br />

(11-9)<br />

From equation (11-9) the forces on the pseudo blade can be derived. On the pseudo blade a force component in<br />

the direction of cutting velocity Fh and a force perpendicular to this direction Fv can be distinguished.<br />

Fh K2sin( )<br />

(11-10)<br />

F K2<br />

cos( )<br />

(11-11)<br />

<strong>The</strong> normal force on the shear plane is now:<br />

G1<br />

sin( ) Icos( )<br />

N1<br />

cos( )<br />

sin( )<br />

(11-12)<br />

<strong>The</strong> normal force on the pseudo blade is now:<br />

G1<br />

sin( ) Icos( )<br />

N2<br />

cos( )<br />

sin( )<br />

(11-13)<br />

Now knowing the forces on the pseudo blade A-C, the equilibrium of forces on the wedge A-C-D can be derived.<br />

<strong>The</strong> horizontal equilibrium of forces on the wedge is:<br />

F h K 4 sin K 3 sin K 2 sin <br />

0<br />

(11-14)<br />

<strong>The</strong> vertical equilibrium of forces on the wedge is:<br />

F v K 4 cos K 3 cos K 2 cos <br />

G 2 0<br />

(11-15)<br />

Copyright © Dr.ir. S.A. Miedema TOC Page 335 of 454

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!