27.07.2021 Views

The Delft Sand, Clay & Rock Cutting Model, 2019a

The Delft Sand, Clay & Rock Cutting Model, 2019a

The Delft Sand, Clay & Rock Cutting Model, 2019a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Figures & Tables.<br />

Figure U-2: Specific energy and production in clay for a 45 degree blade. .................................................... U-126<br />

Figure U-3: Specific energy and production in clay for a 60 degree blade. .................................................... U-127<br />

Figure V-1: <strong>The</strong> shear angle β as a function of the blade angle α and the ac ratio r. ...................................... V-129<br />

Figure V-2: <strong>The</strong> sum of the blade angle and the shear angle. ......................................................................... V-129<br />

Figure V-3: <strong>The</strong> horizontal cutting force coefficient λ HF as a function of the blade angle α and the ac ratio r. ... V-<br />

130<br />

Figure V-4: <strong>The</strong> horizontal cutting force as a function of the blade angle α and the ac ratio r (c=400 kPa). . V-130<br />

Figure V-5: <strong>The</strong> vertical cutting force coefficient λ VF as a function of the blade angle α and the ac ratio r. . V-131<br />

Figure V-6: <strong>The</strong> vertical cutting force as a function of the blade angle α and the ac ratio r (c=400 kPa). ..... V-131<br />

Figure V-7: <strong>The</strong> transition Flow Type vs. Tear Type. .................................................................................... V-132<br />

Figure V-8: <strong>The</strong> shear angle β vs. the blade angle α for the Tear Type. ......................................................... V-133<br />

Figure V-9: <strong>The</strong> horizontal cutting force coefficient λ HT/r T. ........................................................................... V-133<br />

Figure V-10: <strong>The</strong> vertical cutting force coefficient λ VT/r T. ............................................................................. V-134<br />

Figure V-11: <strong>The</strong> vertical cutting force coefficient λ VT/r T zoomed. ................................................................ V-134<br />

Figure V-12: <strong>The</strong> ratio h b/h i at the transition Flow Type/Curling Type. ......................................................... V-135<br />

Figure V-13: <strong>The</strong> shear angle for the Curling Type ........................................................................................ V-135<br />

Figure V-14: <strong>The</strong> horizontal cutting force coefficient λ HC. ............................................................................. V-136<br />

Figure V-15: <strong>The</strong> vertical cutting force coefficient λ VC. ................................................................................. V-136<br />

Figure W-1: <strong>The</strong> shear angle β as a function of the blade angle α and the internal friction angle φ for shear failure.<br />

................................................................................................................................................. W-137<br />

Figure W-2: <strong>The</strong> brittle (shear failure) horizontal force coefficient λ HF. ........................................................ W-137<br />

Figure W-3: <strong>The</strong> brittle (shear failure) vertical force coefficient λ VF. ........................................................... W-138<br />

Figure W-4: <strong>The</strong> specific energy to UCS ratio. .............................................................................................. W-138<br />

Figure W-5: <strong>The</strong> tensile/shear failure criterion based on BTS/Cohesion. ...................................................... W-139<br />

Figure W-6: <strong>The</strong> tensile/shear failure criterion based on UCS/BTS. ............................................................. W-139<br />

Figure W-7: <strong>The</strong> tensile/shear failure criterion based on BTS/Cohesion. ...................................................... W-140<br />

Figure W-8: <strong>The</strong> tensile/shear failure criterion based on UCS/BTS. ............................................................. W-140<br />

Figure W-9: <strong>The</strong> tensile/shear failure range based on BTS/Cohesion for φ=20º. .......................................... W-141<br />

Figure W-10: <strong>The</strong> tensile/shear failure range based on UCS/BTS for φ=20º. ............................................... W-141<br />

Figure W-11: <strong>The</strong> tensile/shear failure range based on BTS/Cohesion for φ=0º. .......................................... W-142<br />

Figure W-12: <strong>The</strong> tensile/shear failure range based on UCS/BTS for φ=0º. ................................................. W-142<br />

Figure W-13: <strong>The</strong> tensile/shear failure range based on BTS/Cohesion for φ=5º. .......................................... W-143<br />

Figure W-14: <strong>The</strong> tensile/shear failure range based on UCS/BTS for φ=5º. ................................................. W-143<br />

Figure W-15: <strong>The</strong> tensile/shear failure range based on BTS/Cohesion for φ=10º. ........................................ W-144<br />

Figure W-16: <strong>The</strong> tensile/shear failure range based on UCS/BTS for φ=10º. ............................................... W-144<br />

Figure W-17: <strong>The</strong> tensile/shear failure range based on BTS/Cohesion for φ=15º. ........................................ W-145<br />

Figure W-18: <strong>The</strong> tensile/shear failure range based on UCS/BTS for φ=15º. ............................................... W-145<br />

Figure W-19: <strong>The</strong> tensile/shear failure range based on BTS/Cohesion for φ=20º. ........................................ W-146<br />

Figure W-20: <strong>The</strong> tensile/shear failure range based on UCS/BTS for φ=20º. ............................................... W-146<br />

Figure W-21: <strong>The</strong> tensile/shear failure range based on BTS/Cohesion for φ=25º. ........................................ W-147<br />

Figure W-22: <strong>The</strong> tensile/shear failure range based on UCS/BTS for φ=25º. ............................................... W-147<br />

Figure W-23: <strong>The</strong> tensile/shear failure range based on BTS/Cohesion for φ=30º. ........................................ W-148<br />

Figure W-24: <strong>The</strong> tensile/shear failure range based on UCS/BTS for φ=30º. ............................................... W-148<br />

Figure W-25: <strong>The</strong> tensile/shear failure range based on BTS/Cohesion for φ=35º. ........................................ W-149<br />

Figure W-26: <strong>The</strong> tensile/shear failure range based on UCS/BTS for φ=35º. ............................................... W-149<br />

Figure W-27: <strong>The</strong> tensile/shear failure range based on BTS/Cohesion for φ=40º. ........................................ W-150<br />

Figure W-28: <strong>The</strong> tensile/shear failure range based on UCS/BTS for φ=40º. ............................................... W-150<br />

Figure W-29: <strong>The</strong> tensile/shear failure range based on BTS/Cohesion for φ=45º. ........................................ W-151<br />

Figure W-30: <strong>The</strong> tensile/shear failure range based on UCS/BTS for φ=45º. ............................................... W-151<br />

Figure W-31: <strong>The</strong> brittle (tensile failure) horizontal force coefficient λ HT. ................................................... W-153<br />

Figure W-32: <strong>The</strong> brittle (tensile failure) vertical force coefficient λ VT. ........................................................ W-153<br />

Figure W-33: <strong>The</strong> brittle (tensile failure) horizontal force coefficient λ HT (DSCRCM, logarithmic). .......... W-154<br />

Figure W-34: <strong>The</strong> brittle (tensile failure) horizontal force coefficient λ HT (Evans, logarithmic). ................. W-154<br />

Figure W-35: <strong>The</strong> shear angle β as a function of the blade angle α and the internal friction angle φ for shear failure,<br />

corrected. ................................................................................................................................. W-155<br />

Figure W-36: <strong>The</strong> brittle (tensile failure) horizontal force coefficient λ HT, corrected. ................................... W-155<br />

Figure W-37: <strong>The</strong> brittle (tensile failure) vertical force coefficient λ VT , corrected. ...................................... W-156<br />

Figure X-1: <strong>The</strong> ratio h b,m/h i for a 30 degree blade. ........................................................................................ X-157<br />

Figure X-2: <strong>The</strong> shear angle β for a 30 degree blade. ..................................................................................... X-157<br />

Figure X-3: <strong>The</strong> horizontal cutting force coefficient λ HC for a 30 degree blade. ............................................. X-158<br />

Copyright © Dr.ir. S.A. Miedema TOC Page 445 of 454

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!