27.07.2021 Views

The Delft Sand, Clay & Rock Cutting Model, 2019a

The Delft Sand, Clay & Rock Cutting Model, 2019a

The Delft Sand, Clay & Rock Cutting Model, 2019a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Figures & Tables.<br />

Figure 5-20: <strong>The</strong> total cutting force versus the blade angle. ................................................................................120<br />

Figure 5-21: <strong>The</strong> direction of the total cutting force versus the blade angle. .......................................................120<br />

Figure 5-22: <strong>Cutting</strong> forces versus cutting velocity. ............................................................................................121<br />

Figure 5-23: A bulldozer pushing sand (commons.wikimedia.org). ....................................................................122<br />

Figure 6-1: <strong>The</strong> cutting process definitions. .........................................................................................................123<br />

Figure 6-2: <strong>The</strong> cutting mechanism in water saturated sand, the Shear Type. .....................................................126<br />

Figure 6-3: Water saturated sand modeled according to the Flow Type. .............................................................126<br />

Figure 6-4: <strong>The</strong> forces on the layer cut in water saturated sand. ..........................................................................127<br />

Figure 6-5: <strong>The</strong> forces on the blade in water saturated sand. ...............................................................................127<br />

Figure 6-6: <strong>The</strong> forces on the blade when cutting water saturated sand. .............................................................128<br />

Figure 6-7: <strong>The</strong> cutting process modeled as a continuous process. ......................................................................129<br />

Figure 6-8: <strong>The</strong> volume balance over the shear zone. ..........................................................................................131<br />

Figure 6-9: Flow of the pore water to the shear zone. ..........................................................................................132<br />

Figure 6-10: <strong>The</strong> coarse mesh as applied in the pore pressure calculations. ........................................................133<br />

Figure 6-11: <strong>The</strong> fine mesh as applied in the pore pressure calculations. ............................................................133<br />

Figure 6-12: <strong>The</strong> water under-pressures distribution in the sand package around the blade. ..............................134<br />

Figure 6-13: <strong>The</strong> pore pressure distribution on the blade A-C and in the shear zone A-B. ................................134<br />

Figure 6-14: <strong>The</strong> equipotential lines. ...................................................................................................................135<br />

Figure 6-15: <strong>The</strong> equipotential lines in color. ......................................................................................................135<br />

Figure 6-16: Flow lines or stream function. .........................................................................................................136<br />

Figure 6-17: <strong>The</strong> stream function in colors. .........................................................................................................136<br />

Figure 6-18: <strong>The</strong> water pore pressures on the blade as function of the length of the wear section w. .................137<br />

Figure 6-19: <strong>The</strong> water pore pressure in the shear zone as function of the length of the wear section w. ...........137<br />

Figure 6-20: <strong>The</strong> flow lines used in the analytical method. .................................................................................138<br />

Figure 6-21: A small program to determine the pore pressures. ..........................................................................143<br />

Figure 6-22: <strong>The</strong> dimensionless pressures on the blade and the shear plane, α=60°, β=20°, k i/k max=0.25, h i/h b=1/3.<br />

.......................................................................................................................................................143<br />

Figure 6-23: <strong>The</strong> dimensionless pressures on the blade and the shear plane, α=60°, β=20°, k i/k max=0.25, h i/h b=1/2.<br />

.......................................................................................................................................................144<br />

Figure 6-24: <strong>The</strong> dimensionless pressures on the blade and the shear plane, α=60°, β=20°, k i/k max=0.25, h i/h b=1/1.<br />

.......................................................................................................................................................144<br />

Figure 6-25: <strong>The</strong> forces F h and F t as function of the shear angle β and the blade angle . .................................146<br />

Figure 6-26: <strong>The</strong> force F h as function of the ratio between k i and k max. ..............................................................149<br />

Figure 6-27: <strong>The</strong> reciprocal of the force F h as function of the ratio between k i and k max. ...................................149<br />

Figure 6-28: Friction angle versus SPT value (Lambe & Whitman (1979), page 148) and Miedema (1995)). ..153<br />

Figure 6-29: SPT values versus relative density (Lambe & Whitman (1979), page 78) and Miedema (1995)). 155<br />

Figure 6-30: SPT values reduced to 10m water depth. ........................................................................................155<br />

Figure 6-31: Specific energy versus SPT value (45 deg. blade). .........................................................................156<br />

Figure 6-32: Production per 100kW versus SPT value (45 deg. blade). ..............................................................156<br />

Figure 6-33: <strong>The</strong> total dimensionless cutting force c t, d t. .....................................................................................159<br />

Figure 6-34: <strong>The</strong> influence of wear. .....................................................................................................................159<br />

Figure 6-35: <strong>The</strong> influence of side effects............................................................................................................159<br />

Figure 6-36: Side view of the old laboratory. ......................................................................................................161<br />

Figure 6-37: <strong>The</strong> cross section of the new laboratory DE. ...................................................................................162<br />

Figure 6-38: An overview of the old laboratory DE. ...........................................................................................162<br />

Figure 6-39: An overview of the new laboratory DE. ..........................................................................................163<br />

Figure 6-40: A side view of the carriage. .............................................................................................................164<br />

Figure 6-41: <strong>The</strong> construction in which the blades are mounted..........................................................................164<br />

Figure 6-42: <strong>The</strong> blades are mounted in a frame with force and torque transducers............................................165<br />

Figure 6-43: <strong>The</strong> center blade and the side blades, with the pore pressure transducers in the center blade. ........165<br />

Figure 6-44: A blade mounted under the carriage in the new laboratory DE. ......................................................166<br />

Figure 6-45: <strong>The</strong> center blade of 30º, 45º and 60º, with and without wear flat. ...................................................167<br />

Figure 6-46: Measuring the cone resistance of the sand. .....................................................................................167<br />

Figure 6-47: <strong>The</strong> pre-amplifiers and filters on the carriage. .................................................................................168<br />

Figure 6-48: A view of the measurement cabin. ..................................................................................................169<br />

Figure 6-49: <strong>The</strong> development of cavitation over the blade. ................................................................................178<br />

Figure 6-50: Partial cavitation limited by dissolved air, α=45º, h i=7cm. .............................................................179<br />

Figure 6-51: <strong>The</strong> forces from which the soil/steel friction angle δ can be determined. .......................................180<br />

Figure 6-52: <strong>The</strong> forces from which the angle of internal friction φ of the sand can be determined. .................180<br />

Figure 6-53: <strong>The</strong> location of the pressure transducer behind the blade. ...............................................................181<br />

Copyright © Dr.ir. S.A. Miedema TOC Page 437 of 454

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!