27.07.2021 Views

The Delft Sand, Clay & Rock Cutting Model, 2019a

The Delft Sand, Clay & Rock Cutting Model, 2019a

The Delft Sand, Clay & Rock Cutting Model, 2019a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Figures & Tables.<br />

Figure 12-11: <strong>The</strong> parallel resistor method. .........................................................................................................353<br />

Figure 12-12: <strong>The</strong> coarse mesh. ...........................................................................................................................354<br />

Figure 12-13: <strong>The</strong> fine mesh. ...............................................................................................................................354<br />

Figure 12-14: Equipotential lines of pore pressures. ............................................................................................355<br />

Figure 12-15: Equipotential distribution in color. ................................................................................................355<br />

Figure 12-16: <strong>The</strong> flow lines or stream function. .................................................................................................356<br />

Figure 12-17: <strong>The</strong> stream function in colors. .......................................................................................................356<br />

Figure 12-18: <strong>The</strong> equilibrium of moments on the wedge in water saturated sand. .............................................357<br />

Figure 12-19: Moment versus wedge angle θ by using polynomial regression for: α=90 0 ; β=15 0 ,20 0 ,25 0 ,30 0 ; δ=28 0 ;<br />

φ=42 0 ; h i=1; h b=3; k i/k max=0.25 .....................................................................................................358<br />

Figure 12-20: <strong>The</strong> moment versus the shear angle for 4 different wedge angles for: α=90 0 ; δ=28 0 ; φ=42 0 ; h i=1;<br />

h b=3; k i/k max=0.25 ..........................................................................................................................359<br />

Figure 12-21: <strong>The</strong> forces on the wedges at 60, 75, 90, 105 and 120 cutting angles. ...................................360<br />

Figure 12-22: No cavitation, the angles θ, β, δ m and λ as a function of the blade angle α for φ=30º and δ=20º. 361<br />

Figure 12-23: No cavitation, the cutting forces as a function of the blade angle α for φ=30º and δ=20º. ............361<br />

Figure 12-24: Cavitating, the angles θ, β, δ m and λ as a function of the blade angle α for φ=30º and δ=20º. ......363<br />

Figure 12-25: Cavitating, the cutting forces as a function of the blade angle α for φ=30º and δ=20º. .................363<br />

Figure 12-26: <strong>The</strong> lower and upper limit where a static wedge can exist for the non-cavitating cutting process.<br />

.......................................................................................................................................................364<br />

Figure 12-27: <strong>The</strong> lower and upper limit where a static wedge can exist for the cavitating cutting process. ......364<br />

Figure 12-28: <strong>The</strong> lower limit where the wedge starts to occur. ..........................................................................365<br />

Figure 12-29: Cross section of the cutting tank. ..................................................................................................367<br />

Figure 12-30: Front view of the test facility. ........................................................................................................368<br />

Figure 12-31: <strong>The</strong> blade mounted under the carriage .........................................................................................369<br />

Figure 12-32: <strong>The</strong> camera in front of the window. .............................................................................................369<br />

Figure 12-33: Cover with camera behind the blade. ............................................................................................369<br />

Figure 12-34: <strong>The</strong> Perspex window in the blade. .................................................................................................370<br />

Figure 12-35: View of the cutting process through the Perspex window. ............................................................370<br />

Figure 12-36: <strong>Cutting</strong> forces for cutting depths (h i) from 3 to 7 cm; blade angle 60°. .......................................371<br />

Figure 12-37: <strong>Cutting</strong> forces for cutting depths (h i) from 3 to 7 cm; blade angle 75°. .......................................372<br />

Figure 12-38: <strong>Cutting</strong> forces for cutting depths (h i) from 3 to 7 cm; blade angle 90°. .......................................373<br />

Figure 12-39: <strong>The</strong> dynamic wedge. ......................................................................................................................374<br />

Figure 13-1: <strong>The</strong> occurrence of a wedge in clay cutting. .....................................................................................377<br />

Figure 13-2: <strong>The</strong> forces on the layer cut in clay cutting with a wedge. ...............................................................380<br />

Figure 13-3: <strong>The</strong> forces on the wedge in clay cutting. .........................................................................................380<br />

Figure 13-4: <strong>The</strong> forces on the blade when cutting clay with a wedge. ...............................................................381<br />

Figure 13-5: <strong>The</strong> equilibrium of moments on the wedge when cutting clay. .......................................................381<br />

Figure 14-1: Definitions. ......................................................................................................................................385<br />

Figure 14-2: <strong>The</strong> forces on the layer cut when a wedge is present.......................................................................388<br />

Figure 14-3: <strong>The</strong> forces on the wedge. .................................................................................................................388<br />

Figure 14-4: <strong>The</strong> forces on the blade when a wedge is present. ...........................................................................389<br />

Figure 14-5: <strong>The</strong> moments on the wedge. ............................................................................................................389<br />

Figure 15-1: Definitions. ......................................................................................................................................393<br />

Figure 15-2: <strong>The</strong> forces on the layer cut when a wedge is present.......................................................................396<br />

Figure 15-3: <strong>The</strong> forces on the wedge. .................................................................................................................397<br />

Figure 15-4: <strong>The</strong> forces on the blade when a wedge is present. ...........................................................................397<br />

Figure 15-5: <strong>The</strong> moments on the wedge. ............................................................................................................398<br />

Figure 16-1: <strong>The</strong> horizontal cutting forces. ..........................................................................................................412<br />

Figure 16-2: <strong>The</strong> specific energy. ........................................................................................................................412<br />

Figure 16-3: <strong>The</strong> pore pressures on blade and shear plane...................................................................................413<br />

Figure 16-4: <strong>The</strong> horizontal cutting forces. ..........................................................................................................416<br />

Figure 16-5: <strong>The</strong> specific energy. ........................................................................................................................416<br />

Figure 16-6: <strong>The</strong> pore pressures on blade and shear plane...................................................................................417<br />

Figure 16-7: <strong>The</strong> Mohr circles. ............................................................................................................................419<br />

Figure 16-8: <strong>The</strong> Mohr circles for a tensile strength of -2 MPa. Tensile Failure. ................................................421<br />

Figure 16-9: <strong>The</strong> Mohr circles for a tensile strength of -10 MPa. Shear Failure. .................................................421<br />

Figure 16-10: <strong>The</strong> Mohr circles with tensile strength of -10 MPa (UCS=100 MPa, φ=20º). Shear Failure. ......423<br />

Figure 16-11: <strong>The</strong> Mohr circles with tensile strength of -5 MPa (UCS=100 MPa, φ=20º). Tensile Failure. .....424<br />

Figure 16-12: <strong>The</strong> Mohr circles with tensile strength of -10 MPa (UCS=60 MPa, φ=20º). Shear Failure. ........426<br />

Figure 16-13: <strong>The</strong> Mohr circles with tensile strength of -3 MPa (UCS=60 MPa, φ=20º). Tensile Failure. .......428<br />

Copyright © Dr.ir. S.A. Miedema TOC Page 441 of 454

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!