11.11.2022 Views

vgbe energy journal 7 (2022) - International Journal for Generation and Storage of Electricity and Heat

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Emission footprint analysis <strong>of</strong> dispatchable gas-based power generation technologies<br />

Tab. 1. Comparison <strong>of</strong> NO X <strong>and</strong> CO emission regulations <strong>for</strong> given electrical efficiencies.<br />

Regulation<br />

13 th BImSchV<br />

44 th BImSchV<br />

BAT low<br />

BAT high<br />

EMCP<br />

EPA (exemplary)<br />

World Bank<br />

SC-GT<br />

231<br />

(-8 %)<br />

384<br />

(+54 %)<br />

115<br />

(-14 %)<br />

269<br />

(-46 %)<br />

384<br />

(-39 %)<br />

237<br />

(-65 %)<br />

395<br />

(-70 %)<br />

NO X emission limit<br />

[mg/kWh el ]<br />

RICE<br />

(Ref.)<br />

250<br />

250<br />

133<br />

500<br />

633<br />

671<br />

1331<br />

CO emission limit<br />

[mg/kWh el ]<br />

CC-GT SC-GT RICE<br />

(Ref.)<br />

82<br />

(-67 %)<br />

268<br />

(+7 %)<br />

54<br />

(-59 %)<br />

164<br />

(-67 %)<br />

268<br />

(-58 %)<br />

22<br />

(-97 %)<br />

275<br />

(-79 %)<br />

770<br />

(+23 %)<br />

770<br />

(+23 %)<br />

38<br />

(-81 %)<br />

308<br />

(-54 %)<br />

625<br />

625<br />

200<br />

667<br />

CC-GT<br />

545<br />

(-13 %)<br />

536<br />

(-14 %)<br />

27<br />

(-87 %)<br />

231<br />

(-65 %)<br />

n/a n/a n/a<br />

144<br />

(-64 %)<br />

402<br />

27<br />

(-93 %)<br />

n/a n/a n/a<br />

El. Efficiency [%] 39 45 56 39 45 56<br />

2 Modelling <strong>of</strong> actual engine<br />

<strong>and</strong> gas turbine<br />

emissions<br />

While regulations define binding constraints<br />

<strong>for</strong> the operation <strong>of</strong> gas-based power generation<br />

technologies, a comprehensive emission<br />

footprint analysis must account <strong>for</strong> the<br />

real emission behavior considering a variety<br />

<strong>of</strong> power plant configurations <strong>and</strong> operating<br />

regimes. The following sections aim to present<br />

the methodology applied in the present<br />

study to model real emission behavior. To<br />

represent the operating characteristics <strong>of</strong><br />

current RICE <strong>and</strong> GT, publicly available data<br />

were collected <strong>and</strong> used to derive load-dependent<br />

emission characteristics. Field<br />

measurements, testbed data, <strong>and</strong> manufacturer<br />

publications were considered <strong>for</strong> this<br />

approach. The data <strong>and</strong> methods are shown<br />

in the following sections.<br />

emission limits <strong>for</strong> CC-GT configurations imposed<br />

by the 13 th BImSchV, the EU BAT conclusions,<br />

<strong>and</strong> the EPA permit st<strong>and</strong> out much<br />

stricter than RICE’s emission limits. This indicates<br />

that current major regulations <strong>of</strong><br />

NO X emissions are not fully technology-neutral<br />

<strong>and</strong> place a higher burden on operators<br />

<strong>of</strong> CC-GT power plants. However, while<br />

RICE must fulfill the 13 th BImSchV emission<br />

limits <strong>for</strong> all operable loads, the limits <strong>for</strong><br />

GTs apply only <strong>for</strong> loads higher than 70 % <strong>of</strong><br />

the nominal load. All emission limits below<br />

this load threshold are to be negotiated with<br />

the local authority [3]. The implications <strong>of</strong><br />

these specifics <strong>for</strong> actual plant emissions will<br />

be briefly discussed in section 5.1.<br />

Equivalent to F i g u r e 1 , F i g u r e 2 shows<br />

an apples-to-apples comparison between<br />

major carbon monoxide (CO) emissions<br />

regulations.<br />

The displayed overlap <strong>of</strong> the areas corresponding<br />

to GT <strong>and</strong> RICE configurations<br />

indicates similar emission limits <strong>for</strong> both<br />

technologies according to 13 th <strong>and</strong> 44 th<br />

BImSchV <strong>and</strong> can be stated as technologyneutral.<br />

However, some regulations (i.e.,<br />

EPA permit <strong>and</strong> EU BAT conclusions (low &<br />

high)) result in lower emission limits <strong>for</strong> GT<br />

compared to RICE.<br />

For a better comparison, the limit values <strong>for</strong><br />

plants currently in operation are analyzed<br />

<strong>and</strong> listed in Ta b l e 1 . For this purpose, a<br />

mean electric efficiency <strong>for</strong> each technology<br />

is assumed. The respective emission limits<br />

are given in mass per <strong>energy</strong> output <strong>and</strong> the<br />

relative deviation from the RICE limit value<br />

as a reference.<br />

Besides the broadly similar NO X limit values<br />

<strong>for</strong> RICE <strong>and</strong> SC-GT imposed by 13 th BIm-<br />

SchV, BAT low, <strong>and</strong> an exemplary EPA permit<br />

(<strong>for</strong> SC-GT), there are also widely differing<br />

limit values <strong>for</strong> both technologies within<br />

a regulation. For example, a significant<br />

deviation is found in the limit value given<br />

by the World Bank. This threshold is more<br />

than three times higher <strong>for</strong> RICE than <strong>for</strong><br />

Tab. 2. Overview <strong>of</strong> <strong>for</strong>mation processes <strong>of</strong> considered species in gas-based power generation<br />

technologies.<br />

Species Favorable conditions Formation in RICE Formation in GT<br />

NO X ––<br />

High temperature<br />

––<br />

Sufficient oxygen excess<br />

CO ––<br />

Incomplete combustion<br />

––<br />

Flame extinction<br />

UHC ––<br />

Incomplete combustion<br />

––<br />

Flame extinction<br />

HCHO ––<br />

intermediate<br />

species during fuel<br />

oxidation<br />

––<br />

Incomplete combustion<br />

PM ––<br />

Fuel-rich zones<br />

––<br />

High temperatures<br />

––<br />

As there is no C-C bond<br />

in CH 4 , PM emissions<br />

derived from CH 4 combustion<br />

are very low<br />

SC- <strong>and</strong> CC-GT <strong>and</strong> there<strong>for</strong>e is <strong>of</strong> the scale<br />

<strong>of</strong> F i g u r e 1. In contrast, the limit value<br />

imposed by the 44 th BImSchV result in higher<br />

NO X emissions <strong>for</strong> SC-GT compared to<br />

RICE.<br />

––<br />

fuel-rich, hot<br />

combustion inside the<br />

pre-chamber can result<br />

in ~50 % <strong>of</strong> the total<br />

NOX <strong>for</strong>mation<br />

––<br />

lean main chamber<br />

com-bustion has<br />

significant oxygen<br />

excess but is<br />

comparably cold.<br />

––<br />

flame quenching<br />

––<br />

from unburned<br />

hydrocarbons (UHC)<br />

––<br />

flame quenching mainly<br />

in close-wall regions <strong>and</strong><br />

cavities<br />

––<br />

The quenching distance<br />

increases <strong>for</strong> leaner<br />

mixtures <strong>and</strong> lower<br />

temperatures.<br />

––<br />

Volume quenching can<br />

occur in ultra-lean<br />

mixtures <strong>and</strong> <strong>for</strong> late<br />

combustion phasing.<br />

––<br />

Formation during flame<br />

quenching <strong>and</strong> during<br />

expansion from UHC<br />

––<br />

Formation in the<br />

exhaust <strong>for</strong><br />

temperatures >600 °C.<br />

––<br />

mainly from the prechamber<br />

––<br />

PM (<strong>and</strong> SO X emissions<br />

may occur due to combustion<br />

<strong>of</strong> lubricating<br />

oil (consumption ~0.4 g/<br />

kWh el <strong>for</strong> modern gas<br />

engines)<br />

––<br />

At higher loads due to<br />

high flame temperature<br />

––<br />

During diffusion-type<br />

pilot burner operation,<br />

high <strong>for</strong>mation at<br />

locations with<br />

stoichiometric<br />

conditions<br />

––<br />

relatively low at higher<br />

loads due to complete<br />

combustion<br />

––<br />

Increasing <strong>for</strong>mation<br />

with load reduction<br />

operation<br />

––<br />

Very high at ignition <strong>and</strong><br />

startups<br />

––<br />

as <strong>for</strong> CO, <strong>for</strong>mation<br />

increases at lower partloads<br />

compared to CO<br />

––<br />

As <strong>for</strong> CO, but at lower<br />

loads<br />

––<br />

Dependent on gas<br />

quality<br />

––<br />

Formation mainly at<br />

diffusion-type pilot<br />

operation<br />

2.1 Pollutant <strong>for</strong>mation<br />

in RICE <strong>and</strong> GT<br />

Be<strong>for</strong>e discussing the real emission data, a<br />

brief overview <strong>of</strong> the fundamental <strong>for</strong>mation<br />

processes <strong>of</strong> the relevant pollutants are<br />

described in Ta b l e 2 .<br />

34 | <strong>vgbe</strong> <strong>energy</strong> <strong>journal</strong> 7 · <strong>2022</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!