07.04.2013 Views

Essentials of Computational Chemistry

Essentials of Computational Chemistry

Essentials of Computational Chemistry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

246 7 INCLUDING ELECTRON CORRELATION IN MO THEORY<br />

Isotope shifts in the frequencies, however, showed very close agreement between theory<br />

and experiment, all data agreeing to within 5% for seven different isotopomers.<br />

The authors did examine whether significant non-dynamical correlation effects complicated<br />

the system, but MCSCF calculations with large active spaces failed to identify any<br />

configurations other than the dominant one that entered with coefficients in excess <strong>of</strong> 0.09,<br />

suggesting that the use <strong>of</strong> single-reference methods was well justified. Part <strong>of</strong> the challenge<br />

for this particular system simply derives from its negative charge, which imposes a greater<br />

demand on basis-set saturation. In any case, this example illustrates how deceptively difficult<br />

it can be to converge solution <strong>of</strong> the Schrödinger equation even for seemingly simple<br />

chemical systems – a mere four heavy atoms.<br />

Bibliography and Suggested Additional Reading<br />

Bartlett, R. J. 2000. ‘Perspective on “On the Correlation Problem in Atomic and Molecular Systems.<br />

Calculations <strong>of</strong> Wavefunction Components in Ursell-type Expansion Using Quantum-field Theoretical<br />

Methods”’ Theor. Chem. Acc., 103, 273.<br />

Cioslowski, J., Ed. 2001. Quantum-Mechanical Prediction <strong>of</strong> Thermochemical Data, Kluwer: Dordrecht.<br />

Cramer, C. J. 1998. ‘Bergman, Aza-Bergman, and Protonated Aza-Bergman Cyclizations and Intermediate<br />

2,5-Arynes: <strong>Chemistry</strong> and Challenges to Computation’ J. Am. Chem. Soc., 120, 6261.<br />

Cramer, C. J. and Smith, B. A. 1996. ‘Trimethylenemethane. Comparison <strong>of</strong> Multiconfiguration Selfconsistent<br />

Field and Density Functional Methods for a Non-Kekulé Hydrocarbon’ J. Phys. Chem.<br />

100, 9664.<br />

Curtiss, L. A., Raghavachari, K., Redfern, P. C., Rassolov, V., and Pople, J. A. 1998. ‘Gaussian-3<br />

(G3) Theory for Molecules Containing First and Second-row Atoms’, J. Chem. Phys. 109, 7764.<br />

Feller, D. and Davidson, E. R. 1990. ‘Basis Sets for Ab Initio Molecular Orbital Calculations and<br />

Intermolecular Interactions’ in Reviews in <strong>Computational</strong> <strong>Chemistry</strong>, Vol. 1, Lipkowitz, K. B.<br />

Boyd, D. B., Eds., VCH: New York, 1.<br />

Hehre, W. J. 1995. Practical Strategies for Electronic Structure Calculations, Wavefunction: Irvine, CA.<br />

Hehre, W. J., Radom, L., Schleyer, P. v. R., and Pople, J. A. 1986. Ab Initio Molecular Orbital<br />

Theory, Wiley: New York.<br />

Jensen, F. 1999. Introduction to <strong>Computational</strong> <strong>Chemistry</strong>, Wiley: Chichester.<br />

Levine, I. N. 2000. Quantum <strong>Chemistry</strong>, 5th Edn., Prentice Hall: New York.<br />

Lynch, B. J. and Truhlar, D. G. 2003. ‘Robust and Affordable Multicoefficient Methods for Thermochemistry<br />

and Thermochemical Kinetics: The MCCM/3 Suite and SAC/3’, J. Phys. Chem. A,<br />

107, 3898.<br />

Martin, J. M. L. 1998. ‘Calibration <strong>of</strong> Atomization Energies <strong>of</strong> Small Polyatomics’ in <strong>Computational</strong><br />

Thermochemistry, ACS Symposium Series, Vol. 677, Irikura, K. K. and Frurip, D. J. Eds., American<br />

Chemical Society, Washington, DC, 212.<br />

Petersson, G. A. 1998. ‘Complete Basis-set Thermochemistry and Kinetics’ in <strong>Computational</strong> Thermochemistry,<br />

ACS Symposium Series, Vol. 677, Irikura, K. K. and Frurip, D. J., Eds., American<br />

Chemical Society, Washington, DC, 237.<br />

Petersson, G. A., Malick, D. K., Wilson, W. G., Ochterski, J. W., Montgomery, J. A., Jr., and Frisch,<br />

M. J. 1998. ‘Calibration and Comparison <strong>of</strong> the Gaussian-2, Complete Basis Set, and Density Functional<br />

Methods for <strong>Computational</strong> Thermochemistry’ J. Chem. Phys., 109, 10 570.<br />

Slipchenko, L. V. and Krylov, A. I. 2003. ‘Electronic Structure <strong>of</strong> the Trimethylenemethane Diradical<br />

in its Ground and Electronically Excited States: Bonding, Equilibrium Geometries, and Vibrational<br />

Frequencies’, J. Chem. Phys., 118, 6874.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!