07.04.2013 Views

Essentials of Computational Chemistry

Essentials of Computational Chemistry

Essentials of Computational Chemistry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

546 15 ADIABATIC REACTION DYNAMICS<br />

small a rate constant, the pre-exponential is predicted to be too large, which returns the rate<br />

constant to a reasonable value, and vice versa. In spite <strong>of</strong> such compensating errors, in the<br />

case <strong>of</strong> acetone the final error in the rate is almost a factor <strong>of</strong> 20. At lower temperatures,<br />

this error would increase dramatically.<br />

Nevertheless, the agreement that is obtained – which is probably the best one should<br />

expect given the small size <strong>of</strong> the basis set used in the CCSD(T) calculations<br />

and the possible problems associated with biradical character in the methyl vinyl<br />

ether pathway – suggests that the theoretically predicted TS structures are accurate<br />

representations <strong>of</strong> the actual transition states. This establishes the concerted nature <strong>of</strong> three<br />

<strong>of</strong> the rearrangements and the stepwise nature <strong>of</strong> the fourth.<br />

Bibliography and Suggested Additional Reading<br />

Chuang, Y.-Y., Cramer, C. J., and Truhlar, D. G. 1998. ‘The Interface <strong>of</strong> Electronic Structure and<br />

Dynamics for Reactions in Solution’, Int. J. Quantum Chem., 70, 887.<br />

Chuang, Y.-Y., Radhakrishnan, M. L., Fast, P. L., Cramer, C. J., and Truhlar, D. G. 1999. ‘Direct<br />

Dynamics for Free Radical Kinetics in Solution: Solvent Effect on the Rate Constant for the Reaction<br />

<strong>of</strong> Methanol with Atomic Hydrogen’, J. Phys. Chem. A, 103, 4893.<br />

Espenson, J. H. 1995. Chemical Kinetics and Reaction Mechanisms, 2nd Edn., McGraw-Hill: New<br />

York.<br />

Garrett, B. C. and Truhlar, D. G. 1979. ‘Semiclassical Tunneling Calculations’, J. Phys. Chem., 83,<br />

2921.<br />

Hynes, J. T. 1996. ‘Crossing the Transition State in Solution’, in Solvent Effects and Chemical Reactivity,<br />

Tapia,O.andBertrán, J. Eds., Kluwer: Dordrecht, 231.<br />

Jensen, F. 1999. Introduction to <strong>Computational</strong> <strong>Chemistry</strong>, Wiley: Chichester.<br />

Jensen, F. and Norrby, P.-O. 2003. ‘Transition States from Empirical Force Fields’, Theor. Chem. Acc.,<br />

109, 1.<br />

Johnston, H. S. 1966. Gas Phase Reaction Rate Theory, Ronald Press: New York.<br />

Lowry, T. H. and Richardson, K. S. 1981. Mechanism and Theory in Organic <strong>Chemistry</strong>, 2nd Edn.,<br />

Harper & Row: New York.<br />

Steinfeld, J. I., Francisco, J. S., and Hase, W. L. 1999. Chemical Kinetics and Dynamics, 2nd Edn.,<br />

Prentice Hall: Upper Saddle River, NJ.<br />

Truhlar, D. G., Garrett, B. C., and Klippenstein, S. J. 1996. ‘Current Status <strong>of</strong> Transition-state Theory’,<br />

J. Phys. Chem., 100, 12771.<br />

Tucker, S. C. and Truhlar, D. G. 1989. ‘Dynamical Formulation <strong>of</strong> Transition State Theory: Variational<br />

Transition States and Semiclassical Tunneling’, in New Theoretical Concepts for Understanding<br />

Organic Reactions, Bertrán, J. and Czismadia, I. G., Eds., Kluwer: Berlin, 291.<br />

Worth, G. A. and Robb, M. A. 2002. ‘Applying Direct Molecular Dynamics to Non-adiabatic Systems’,<br />

Adv. Chem. Phys., 124, 355.<br />

References<br />

Allison, T. C. and Truhlar, D. G. 1998. In: Modern Methods, for Multidimensional Dynamics Computations<br />

in <strong>Chemistry</strong>, Thompson, D. L., Ed., World Scientific: Singapore, 618.<br />

Bell, R. P. 1959. Trans. Faraday Soc., 55, 1.<br />

Dubnikova F. and Lifshitz, A. 2000. J. Phys. Chem. A, 104, 4489.<br />

Eckart, C. 1930. Phys. Rev., 35, 1303.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!