13.08.2013 Views

Rock Mechanics.pdf - Mining and Blasting

Rock Mechanics.pdf - Mining and Blasting

Rock Mechanics.pdf - Mining and Blasting

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

⎡<br />

⎢<br />

⎣<br />

xx<br />

yy<br />

zz<br />

xy<br />

yz<br />

zx<br />

STRESS AND INFINITESIMAL STRAIN<br />

The more common statements of Hooke’s Law for isotropic elasticity are readily<br />

recovered from equation 2.39, i.e.<br />

where<br />

εxx = 1<br />

E [xx − (yy + zz)], etc.<br />

xy = 1<br />

G xy, etc. (2.40)<br />

G =<br />

E<br />

2(1 + )<br />

The quantities E, G, <strong>and</strong> are Young’s modulus, the modulus of rigidity (or shear<br />

modulus) <strong>and</strong> Poisson’s ratio. Isotropic elasticity is a two-constant theory, so that determination<br />

of any two of the elastic constants characterises completely the elasticity<br />

of an isotropic medium.<br />

The inverse form of the stress–strain equation 2.39, for isotropic elasticity, is given<br />

by<br />

⎤<br />

⎡<br />

1 /(1 − ) /(1 − ) 0 0 0<br />

⎤ ⎡<br />

⎥<br />

⎢<br />

⎥<br />

⎢/(1<br />

− )<br />

⎥<br />

⎢<br />

⎥<br />

⎢/(1<br />

− )<br />

⎥<br />

⎢<br />

⎥<br />

E(1 − ) ⎢<br />

⎥ =<br />

⎢ 0<br />

⎥ (1 + )(1 − 2) ⎢<br />

⎥<br />

⎢<br />

⎥<br />

⎢ 0<br />

⎥<br />

⎢<br />

⎦<br />

⎣<br />

0<br />

1<br />

/(1 − )<br />

0<br />

0<br />

0<br />

/(1 − )<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

(1 − 2)<br />

2(1 − )<br />

0<br />

0<br />

0<br />

0<br />

0<br />

(1 − 2)<br />

2(1 − )<br />

0<br />

0 ⎥ ⎢<br />

⎥ ⎢<br />

0<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

0 ⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

⎥ ⎢<br />

0 ⎥ ⎢<br />

⎥ ⎢<br />

(1 − 2) ⎦ ⎣<br />

2(1 − )<br />

Figure 2.10 A transversely isotropic<br />

body for which the x, y plane is<br />

the plane of isotropy.<br />

εxx<br />

εyy<br />

εzz<br />

xy<br />

yz<br />

zx<br />

⎤<br />

⎥<br />

⎦<br />

(2.41)<br />

The inverse forms of equations 2.40, usually called Lamé’s equations, are obtained<br />

from equation 2.41, i.e.<br />

where is Lamé’s constant, defined by<br />

xx = + 2Gεxx, etc.<br />

xy = Gxy, etc.<br />

= 2G<br />

(1 − 2) =<br />

E<br />

(1 + )(1 − 2)<br />

<strong>and</strong> is the volumetric strain.<br />

Transverse isotropic elasticity ranks second to isotropic elasticity in the degree of<br />

expression of elastic symmetry in the material behaviour. Media exhibiting transverse<br />

isotropy include artificially laminated materials <strong>and</strong> stratified rocks, such as shales.<br />

In the latter case, all lines lying in the plane of bedding are axes of elastic symmetry.<br />

The only other axis of elastic symmetry is the normal to the plane of isotropy. In<br />

Figure 2.10, illustrating a stratified rock mass, the plane of isotropy of the material<br />

36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!