17.02.2014 Views

Mathematical Methods for Physicists: A concise introduction - Site Map

Mathematical Methods for Physicists: A concise introduction - Site Map

Mathematical Methods for Physicists: A concise introduction - Site Map

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FUNCTIONS OF A COMPLEX VARIABLE<br />

If y ˆ 0, the required limit is lim x!0 x=x ˆ 1. On the other hand, if<br />

x ˆ 0, the required limit is 1. Then since the limit depends on the manner<br />

in which z ! 0, the derivative does not exist and so f …z† ˆz* is non-analytic<br />

everywhere.<br />

Example 6.8<br />

Given f …z† ˆ2z 2 1, ®nd f 0 …z† at z 0 ˆ 1 i.<br />

Solution:<br />

f 0 …z 0 †ˆf 0 …2z 2 1†‰2…1 i† 2 1Š<br />

…1 i† ˆ lim<br />

z!1i z …1 i†<br />

2‰z …1 i†Š‰z ‡…1 i†Š<br />

ˆ lim<br />

z!1i z …1 i†<br />

ˆ lim 2‰z ‡…1 i†Š ˆ 4…1 i†:<br />

z!1i<br />

The rules <strong>for</strong> di€erentiating sums, products, and quotients are, in general, the<br />

same <strong>for</strong> complex functions as <strong>for</strong> real-valued functions. That is, if f 0 …z 0 † and<br />

g 0 …z 0 † exist, then:<br />

(1) … f ‡ g† 0 …z 0 †ˆf 0 …z 0 †‡g 0 …z 0 †;<br />

(2) … fg† 0 …z 0 †ˆf 0 …z 0 †g…z 0 †‡f …z 0 †g 0 …z 0 †;<br />

<br />

f 0<br />

(3) …z †ˆg…z 0† f 0 …z 0 †f …z 0 †g 0 …z 0 †<br />

g 0<br />

g…z 0 † 2 ; if g 0 …z 0 †6ˆ0:<br />

The Cauchy±Riemann conditions<br />

We call f …z† analytic at z 0 ,iff 0 …z† exists <strong>for</strong> all z in some neighborhood of z 0 ;<br />

and f …z† is analytic in a region R if it is analytic at every point of R. Cauchy and<br />

Riemann provided us with a simple but extremely important test <strong>for</strong> the analyticity<br />

of f …z†. To deduce the Cauchy±Riemann conditions <strong>for</strong> the analyticity of<br />

f …z†, let us return to Eq. (6.10):<br />

f 0 f …z<br />

…z 0 †ˆ lim 0 ‡ z†f …z 0 †<br />

:<br />

z!0 z<br />

If we write f …z† ˆu…x; y†‡iv…x; y†, this becomes<br />

f 0 …z† ˆ<br />

lim<br />

x;y!0<br />

u…x ‡ x; y ‡ y†u…x; y†‡i…same <strong>for</strong> v†<br />

:<br />

x ‡ iy<br />

There are of course an in®nite number of ways to approach a point z on a twodimensional<br />

surface. Let us consider two possible approaches ± along x and along<br />

244

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!