17.02.2014 Views

Mathematical Methods for Physicists: A concise introduction - Site Map

Mathematical Methods for Physicists: A concise introduction - Site Map

Mathematical Methods for Physicists: A concise introduction - Site Map

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SPECIAL FUNCTIONS OF MATHEMATICAL PHYSICS<br />

7.10 Verify Eq. (7.37) <strong>for</strong> the function P 1 2…x†:<br />

7.11 Show that<br />

d nm<br />

dx nm …x2 1† n …n m†! ˆ<br />

…n ‡ m†! …x2 1† m d n‡m<br />

dx n‡m …x2 1† m<br />

Hint: Write …x 2 1† n ˆ…x 1† n …x ‡ 1† n and ®nd the derivatives by<br />

Leibnitz's rule.<br />

7.12 Use the generating function <strong>for</strong> the Hermite polynomials to ®nd:<br />

(a) H 0 …x†; (b) H 1 …x†; (c) H 2 …x†; (d)H 3 …x†.<br />

7.13 Verify that the generating function satis®es the identity<br />

@ 2 <br />

@x<br />

@<br />

2x<br />

2<br />

@x<br />

‡ 2t<br />

@<br />

@t ˆ 0:<br />

Show that the functions H n …x† in Eq. (7.47) satisfy Eq. (7.38).<br />

7.14 Given the di€erential equation y 00 ‡…" x 2 †y ˆ 0, ®nd the possible values<br />

of " (eigenvalues) such that the solution y…x† of the given di€erential equation<br />

tends to zero as x !1. For these values of ", ®nd the eigenfunctions<br />

y…x†.<br />

7.15 In Eq. (7.58), write the series <strong>for</strong> the exponential and collect powers of z to<br />

verify the ®rst few terms of the series. Verify the identity<br />

x @2 @<br />

‡…1 x†<br />

@x2 @x ‡ z @<br />

@z ˆ 0:<br />

Substituting the series (7.58) into this identity, show that the functions L n …x†<br />

in Eq. (7.58) satisfy Laguerre's equation.<br />

7.16 Show that<br />

7.17 Show that<br />

J 0 …x† ˆ1 <br />

x2<br />

2 2 …1!† 2 ‡ x4<br />

2 4 …2!† 2 x6<br />

2 6 …3!† 2 ‡;<br />

J 1 …x† ˆx<br />

2 x3<br />

2 3 1!2! ‡ x5<br />

2 5 2!3! x7<br />

2 7 3!4! ‡:<br />

<br />

J 1=2 …x† ˆ 2 1=2 <br />

sin x; J<br />

x<br />

1=2 …x† ˆ 2 1=2<br />

cos x:<br />

x<br />

7.18 If n is a positive integer, show that the <strong>for</strong>mal expression <strong>for</strong> J n …x† gives<br />

J n …x† ˆ…1† n J n …x†.<br />

7.19 Find the general solution to the modi®ed Bessel's equation<br />

x 2 y 00 ‡ xy 0 ‡…x 2 s 2 2 †y ˆ 0<br />

which di€ers from Bessel's equation only in that sx takes the place of x.<br />

344

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!