17.02.2014 Views

Mathematical Methods for Physicists: A concise introduction - Site Map

Mathematical Methods for Physicists: A concise introduction - Site Map

Mathematical Methods for Physicists: A concise introduction - Site Map

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS<br />

Then<br />

and<br />

k 3 ˆ f …x 0 ‡ h; y 0 ‡ 2hk 2 hk 1 †<br />

ˆ f 0 ‡ h…A 0 ‡ f 0 B 0 †‡…1=2†h 2 fC 0 ‡ 2f 0 D 0 ‡ f 2 0 E 0 ‡ 2B 0 …A 0 ‡ f 0 B 0 †g<br />

‡ O…h 3 †:<br />

…1=6†…k 1 ‡ 4k 2 ‡ k 3 †ˆhf 0 ‡…1=2†h 2 …A 0 ‡ f 0 B 0 †<br />

‡…1=6†h 3 …C 0 ‡ 2f 0 D 0 ‡ f 2 0 E 0 ‡ A 0 B 0 ‡ f 0 B 2 0†‡O…h 4 †:<br />

Comparing this with Eq. (13.26), we see that it agrees with the Taylor series<br />

expansion (up to the term in h 3 ) and the <strong>for</strong>mula is established. Formula (13.25)<br />

can be established in a similar manner by taking one more term of the Taylor<br />

series.<br />

Example 13.6<br />

Using the Runge±Kutta method and h ˆ 0:1, solve<br />

y 0 ˆ x y 2 =10; x 0 ˆ 0; y 0 ˆ 1:<br />

Solution: With h ˆ 0:1, h 4 ˆ 0:0001 and we may use the Runge±Kutta thirdorder<br />

approximation.<br />

First step:<br />

x 0 ˆ 0; y 0 ˆ 0; f 0 ˆ0:1;<br />

k 1 ˆ0:1, y 0 ‡ hk 1 =2 ˆ 0:995;<br />

k 2 ˆ0:049; 2k 2 k 1 ˆ 0:002; k 3 ˆ 0;<br />

y 1 ˆ y 0 ‡ h 6 …k 1 ‡ 4k 2 ‡ k 1 †ˆ0:9951:<br />

Second step: x 1 ˆ x 0 ‡ h ˆ 0:1, y 1 ˆ 0:9951, f 1 ˆ 0:001,<br />

k 1 ˆ 0:001, y 1 ‡ hk 1 =2 ˆ 0:9952;<br />

k 2 ˆ 0:051, 2k 2 k 1 ˆ 0:101, k 3 ˆ 0:099,<br />

y 2 ˆ y 1 ‡ h 6 …k 1 ‡ 4k 2 ‡ k 1 †ˆ1:0002:<br />

Third step: x 2 ˆ x 1 ‡ h ˆ 0:2; y 2 ˆ 1:0002, f 2 ˆ 0:1,<br />

k 1 ˆ 0:1, y 2 ‡ hk 1 =2 ˆ 1:0052,<br />

k 2 ˆ 0:149; 2k 2 k 1 ˆ 0:198; k 3 ˆ 0:196;<br />

y 3 ˆ y 2 ‡ h 6 …k 1 ‡ 4k 2 ‡ k 1 †ˆ1:0151:<br />

475

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!