17.02.2014 Views

Mathematical Methods for Physicists: A concise introduction - Site Map

Mathematical Methods for Physicists: A concise introduction - Site Map

Mathematical Methods for Physicists: A concise introduction - Site Map

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SHIFTING (OR TRANSLATION) THEOREMS<br />

Example 9.4<br />

Show that:<br />

…a† Le ‰ ax x n n!<br />

Š ˆ<br />

…p ‡ a† n‡1 ; p > a;<br />

…b† Le ax b<br />

‰ sin bxŠ ˆ<br />

…p ‡ a† 2 ‡ b ; p > a:<br />

2<br />

Solution:<br />

(a) Recall<br />

L‰x n Šˆn!=p n‡1 ; p > 0;<br />

the shifting theorem then gives<br />

L‰e ax x n n!<br />

Šˆ<br />

…p ‡ a† n‡1 ; p > a:<br />

(b) Since<br />

a<br />

L‰sin axŠ ˆ<br />

p 2 ‡ a 2 ;<br />

it follows from the shifting theorem that<br />

L‰e ax b<br />

sin bxŠ ˆ<br />

…p ‡ a† 2 ‡ b ; p > a:<br />

2<br />

Because of the relationship between Laplace trans<strong>for</strong>ms and inverse Laplace<br />

trans<strong>for</strong>ms, any theorem involving Laplace trans<strong>for</strong>ms will have a corresponding<br />

theorem involving inverse Lapace trans<strong>for</strong>ms. Thus<br />

If L 1 ‰ F…p† Š ˆ f …x†; then L 1 ‰ F…p a† Š ˆ e ax f …x†:<br />

The second shifting theorem<br />

This second shifting theorem involves the shifting x variable and states that<br />

Given L‰ f …x†Š ˆ F…p†, where f …x† ˆ0 <strong>for</strong> x < 0; and if g…x† ˆf …x a†,<br />

then<br />

L‰g…x†Š ˆ e ap L‰ f …x†Š:<br />

To prove this theorem, let us start with<br />

from which it follows that<br />

F…p† ˆLf…x† ‰ Š ˆ<br />

e ap F…p† ˆe ap Lf…x† ‰ Š ˆ<br />

Z 1<br />

0<br />

Z 1<br />

0<br />

e px f …x†dx<br />

e p…x‡a† f …x†dx:<br />

379

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!