24.07.2014 Views

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

8 Chapter 1<br />

a)<br />

hc ν<br />

virtual energy level<br />

hc ν<br />

b) c)<br />

hc ν<br />

hc( ν− ∆ν)<br />

hc ν hc( ν+ ∆ν)<br />

Cabannes<br />

∆J=0<br />

i=f<br />

Stokes<br />

f<br />

i<br />

i<br />

∆J=+2 ∆J =−2<br />

f<br />

Anti−Stokes<br />

Figure 1.3: Molecular <strong>scatter<strong>in</strong>g</strong> <strong>in</strong>volves an <strong>in</strong>cident photon that br<strong>in</strong>gs a molecule with <strong>in</strong>itial energy<br />

state i to a virtual energy state (dashed l<strong>in</strong>e). Subsequently, <strong>the</strong> molecule falls back to a lower energy state<br />

f by releas<strong>in</strong>g a photon. If this f<strong>in</strong>al state f has <strong>the</strong> same energy as <strong>the</strong> <strong>in</strong>itial state i <strong>the</strong> <strong>scatter<strong>in</strong>g</strong> process<br />

is said to be elastic and corresponds to Cabannes <strong>scatter<strong>in</strong>g</strong> (a). When <strong>the</strong> released photon has a lower<br />

energy than <strong>the</strong> <strong>in</strong>cident photon (E f > E i ) <strong>the</strong> process is called Stokes rotational <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> (b).<br />

When <strong>the</strong> released photon ga<strong>in</strong>s energy (E f < E i ) <strong>the</strong> <strong>scatter<strong>in</strong>g</strong> process is called anti-Stokes rotational<br />

<strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> (c). The net rotational energy transitions have to obey <strong>the</strong> quantum law ∆J = ±0, 2.<br />

We restrict ourselves to pure rotational <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> processes (∆v=0; ∆J = ±2).<br />

<strong>Rotational</strong> <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> by air molecules that <strong>in</strong>volves a released photon with less energy than<br />

<strong>the</strong> <strong>in</strong>cident one (∆J = +2; Fig. 1.3b) is referred to as Stokes rotational <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> and <strong>in</strong>elastic<br />

<strong>scatter<strong>in</strong>g</strong> that <strong>in</strong>volves an energy ga<strong>in</strong> of <strong>the</strong> released photons (∆J = −2 ; Fig. 1.3c) is called anti-<br />

Stokes rotational <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> [Young, 1982]. The energies of <strong>the</strong> anti-Stokes rotational <strong>Raman</strong><br />

photons are given by<br />

hcν = hcν <strong>in</strong> + (4hcB 0 − 6hcD 0 )(J − 1 2 ) − 8hcD 0(J − 1 2 )3 , J = 2, 3,... , (1.4)<br />

and <strong>the</strong> energy of <strong>the</strong> Stokes rotational <strong>Raman</strong> photons are given by<br />

hcν = hcν <strong>in</strong> − (4hcB 0 − 6hcD 0 )(J + 3 2 ) + 8hcD 0(J + 3 2 )3 , J = 0, 1,... , (1.5)<br />

where hcν <strong>in</strong> is <strong>the</strong> energy of <strong>the</strong> <strong>in</strong>cident light (see e.g. Fish and Jones [1995].) The energy shifts,<br />

and thus <strong>the</strong> wavenumber shifts ν−ν <strong>in</strong> , only adopt discrete values. It is important to realize that <strong>the</strong>se<br />

fixed shifts <strong>in</strong> energy lead to wavelength shifts λ−λ <strong>in</strong> that are not fixed with respect to <strong>the</strong> wavelength<br />

of <strong>the</strong> <strong>in</strong>cident light λ <strong>in</strong> . At shorter wavelengths <strong>the</strong> shifts <strong>in</strong> terms of wavelength are smaller than<br />

at longer wavelengths. This makes <strong>the</strong> use of wavenumbers more elegant and simple to describe <strong>the</strong><br />

<strong>Raman</strong> effect. Never<strong>the</strong>less, both descriptions are used throughout this <strong>the</strong>sis.<br />

The l<strong>in</strong>e-strengths of <strong>the</strong> <strong>in</strong>dividual rotational <strong>Raman</strong> l<strong>in</strong>es can be measured <strong>in</strong> <strong>the</strong> laboratory or<br />

can be calculated from <strong>the</strong>ory (e.g. [Chance and Spurr, 1997, Burrows et al., 1996, Penney et al.,<br />

<strong>scatter<strong>in</strong>g</strong> process <strong>in</strong>volves much larger energy shifts than pure rotational <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong>, i.e. -2331 cm −1 and -1555<br />

cm −1 for N 2 and O 2 , respectively. For <strong>in</strong>cident light at 400 nm, this corresponds to wavelength shifts of +41.1 nm<br />

and +26.5 nm for N 2 and O 2 , respectively. Burrows et al. [1996] estimated that <strong>the</strong> largest spectral features caused by<br />

vibrational <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> are expected to be maximally 0.27% <strong>in</strong> GOME reflectivity spectra.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!