24.07.2014 Views

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

20 Chapter 2<br />

small [Landgraf et al., 2004]. In addition to <strong>the</strong> scalar approach we consider a plane-parallel model<br />

<strong>atmosphere</strong>, which is a fair approximation for <strong>the</strong> simulation of space-borne measurements with a<br />

nadir view<strong>in</strong>g geometry for moderate solar zenith angles (e.g. [Walter et al., 2004]).<br />

The doubl<strong>in</strong>g-add<strong>in</strong>g approach [Stokes, 1862, Peebles and Plasset, 1951, van de Hulst, 1963,<br />

1980, Hovenier, 1971, Hansen, 1971, de Haan et al., 1987] offers an alternative solution technique<br />

of a radiative transfer problem compared to solv<strong>in</strong>g <strong>the</strong> radiative transfer equation directly. Based on<br />

<strong>the</strong> reflection and transmission properties of optically th<strong>in</strong> model layers, <strong>the</strong> correspond<strong>in</strong>g properties<br />

of <strong>the</strong> model <strong>atmosphere</strong> can be calculated us<strong>in</strong>g <strong>the</strong> add<strong>in</strong>g scheme. Until now, this approach has<br />

only <strong>in</strong>cluded elastic <strong>scatter<strong>in</strong>g</strong>, but it can be extended <strong>in</strong> a straightforward manner to also account for<br />

multiple <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong>.<br />

The doubl<strong>in</strong>g-add<strong>in</strong>g method aims to calculate <strong>the</strong> reflection and transmission properties of a<br />

model <strong>atmosphere</strong> given by <strong>the</strong> reflection and transmission operators R, R ∗ , T and T ∗ . These operators<br />

relate <strong>the</strong> <strong>in</strong>com<strong>in</strong>g radiation def<strong>in</strong>ed at <strong>the</strong> top and bottom of <strong>the</strong> model <strong>atmosphere</strong> to <strong>the</strong><br />

reflected and transmitted radiation:<br />

I + top = R I − top ,<br />

I − bot<br />

= R ∗ I + bot ,<br />

I − bot<br />

= T I − top ,<br />

I + top = T ∗ I + bot . (2.1)<br />

Here, I top + and Itop − represent <strong>the</strong> <strong>in</strong>tensity at <strong>the</strong> top of <strong>the</strong> model <strong>atmosphere</strong>, where superscripts “+”<br />

and “-” <strong>in</strong>dicate upward and downward directions. Similarly, I + bot and I− bot<br />

<strong>in</strong>dicate <strong>the</strong> <strong>in</strong>tensity at <strong>the</strong><br />

lower boundary of <strong>the</strong> model <strong>atmosphere</strong>. For a plane parallel <strong>atmosphere</strong>, <strong>the</strong> Stokes parameters are<br />

functions of wavenumber ν and of <strong>the</strong> direction of <strong>the</strong> radiation. The direction is characterized by <strong>the</strong><br />

cos<strong>in</strong>e of <strong>the</strong> zenith angle µ, which is def<strong>in</strong>ed with respect to <strong>the</strong> outward normal, and <strong>the</strong> azimuthal<br />

angle φ, which is measured counterclockwise when look<strong>in</strong>g downward.<br />

The reflection and transmission operators can be written as <strong>in</strong>tegral operators of <strong>the</strong> type<br />

R I − top(ν,µ,ϕ) = 1 π<br />

∫ ∞<br />

0<br />

∫ ∞<br />

∫ 2π ∫ 1<br />

dν ′ dϕ ′ dµ ′ µ ′ R(ν,µ,ϕ;ν ′ ,µ ′ ,ϕ ′ )Itop(ν − ′ ,µ ′ ,ϕ ′ ) , (2.2)<br />

0<br />

0<br />

T Itop(ν,µ,ϕ) − = 1 ∫ 2π ∫ 1<br />

dν ′ dϕ ′ dµ ′ µ ′ T(ν,µ,ϕ;ν ′ ,µ ′ ,ϕ ′ )I<br />

π<br />

top(ν − ′ ,µ ′ ,ϕ ′ ) , (2.3)<br />

0 0 0<br />

where <strong>in</strong>tegral kernels R and T denote <strong>the</strong> reflection and transmission functions. Analogous expressions<br />

hold for <strong>the</strong> operators R ∗ and T ∗ .<br />

For <strong>the</strong> numerical implementation, it is useful to separate <strong>the</strong> transmission properties of <strong>the</strong> direct<br />

beam from those of <strong>the</strong> scattered radiation, namely<br />

T = T 0 + T dif . (2.4)<br />

Here, <strong>the</strong> transmission operator for <strong>the</strong> direct beam, T 0 , is def<strong>in</strong>ed with <strong>the</strong> <strong>in</strong>tegral kernel<br />

T 0 (ν,µ,ϕ;ν ′ ,µ ′ ,ϕ ′ ) = π µ ′ e−∆τ ′ /µ ′ δ(ν−ν ′ )δ(µ−µ ′ )δ(ϕ−ϕ ′ ), (2.5)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!