24.07.2014 Views

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A doubl<strong>in</strong>g-add<strong>in</strong>g method to <strong>in</strong>clude multiple orders of rotational <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> 35<br />

2.6 Summary<br />

We have extended <strong>the</strong> <strong>the</strong>ory of <strong>the</strong> doubl<strong>in</strong>g-add<strong>in</strong>g method to <strong>in</strong>clude <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong>. For <strong>the</strong><br />

numerical implementation of this method it was necessary to chop <strong>the</strong> problem up <strong>in</strong> pieces: for each<br />

<strong>in</strong>com<strong>in</strong>g wavenumber a separate calculation of <strong>the</strong> reflection and transmission functions needed to<br />

be performed. To reduce <strong>the</strong> process<strong>in</strong>g time to an acceptable level, <strong>the</strong> choice of an optimized<br />

wavenumber grid was crucial.<br />

In this way we were able to quantify, for <strong>the</strong> first time, <strong>the</strong> impact of multiple <strong>in</strong>elastic <strong>Raman</strong><br />

<strong>scatter<strong>in</strong>g</strong> on backscattered sunlight by <strong>the</strong> Earth’s <strong>atmosphere</strong>. With <strong>the</strong> use of a two-layer model<br />

of <strong>the</strong> Earth’s <strong>atmosphere</strong>, we studied three spectral ranges. In <strong>the</strong> range 280–290 nm both multiple<br />

elastic and multiple <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong> can be neglected, ma<strong>in</strong>ly due to strong ozone absorption. In<br />

<strong>the</strong> range 320–330 nm about 0.5% of <strong>the</strong> fill<strong>in</strong>g-<strong>in</strong> is due to multiple <strong>in</strong>elastic <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong>.<br />

The contribution of multiple <strong>in</strong>elastically scattered light is generally larger at places where fill<strong>in</strong>g<strong>in</strong><br />

occurs, but <strong>in</strong> this particular spectral range no prom<strong>in</strong>ent Fraunhofer l<strong>in</strong>es appear. In <strong>the</strong> range<br />

390–400 nm <strong>the</strong> contribution of multiple <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong> is smaller, i.e. about 0.2%, but a more<br />

significant impact is observed at <strong>the</strong> fill<strong>in</strong>g-<strong>in</strong> of <strong>the</strong> Ca II K and H l<strong>in</strong>e. At 0.2 nm <strong>in</strong>strumental<br />

resolution, about 0.7% of <strong>the</strong> fill<strong>in</strong>g-<strong>in</strong> <strong>in</strong> <strong>the</strong> center of <strong>the</strong>se l<strong>in</strong>es is <strong>the</strong> result of multiple <strong>in</strong>elastic<br />

<strong>scatter<strong>in</strong>g</strong>.<br />

Different approaches exist <strong>in</strong> <strong>the</strong> literature [Jo<strong>in</strong>er et al., 1995, 2004, Sioris and Evans, 2002b,<br />

Vountas et al., 1998, Landgraf et al., 2004] to <strong>in</strong>clude one order of <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> radiative<br />

transfer model<strong>in</strong>g. We adapted our doubl<strong>in</strong>g-add<strong>in</strong>g model with <strong>the</strong> use of a modified s<strong>in</strong>gle<br />

<strong>scatter<strong>in</strong>g</strong> albedo to simulate multiple elastic Cabannes <strong>scatter<strong>in</strong>g</strong>, but only one order of <strong>in</strong>elastic <strong>Raman</strong><br />

<strong>scatter<strong>in</strong>g</strong>. This approach though leads <strong>in</strong> all cases to an underestimation of <strong>the</strong> radiances. To<br />

overcome this loss of photons, o<strong>the</strong>r approaches assume a Rayleigh <strong>scatter<strong>in</strong>g</strong> <strong>atmosphere</strong> <strong>in</strong> which<br />

one Rayleigh <strong>scatter<strong>in</strong>g</strong> event is replaced with a Cabannes <strong>scatter<strong>in</strong>g</strong> event and correspond<strong>in</strong>g <strong>Raman</strong><br />

<strong>scatter<strong>in</strong>g</strong>. We compared our multiple <strong>scatter<strong>in</strong>g</strong> doubl<strong>in</strong>g-add<strong>in</strong>g model with one of those models,<br />

namely <strong>the</strong> model by Landgraf et al. [2004] (see Chapter 3). We found that <strong>the</strong> impact of multiple<br />

<strong>in</strong>elastic <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> is visible <strong>in</strong> both approaches: <strong>in</strong> <strong>the</strong> first approach <strong>the</strong> fill<strong>in</strong>g-<strong>in</strong> is underestimated<br />

at all wavelengths, whereas <strong>the</strong> second approach overestimates <strong>the</strong> fill<strong>in</strong>g-<strong>in</strong> amplitudes only<br />

at wavelengths where Fraunhofer l<strong>in</strong>es or absorption features appear. It seems that reach<strong>in</strong>g <strong>the</strong> correct<br />

cont<strong>in</strong>uum radiances with <strong>the</strong> use of <strong>the</strong> second approach comes at a prize: <strong>the</strong> deviations of <strong>the</strong><br />

fill<strong>in</strong>g-<strong>in</strong> amplitudes are slightly larger compared to <strong>the</strong> first approach.<br />

We realize that <strong>the</strong> absolute numbers as presented <strong>in</strong> this paper depend on <strong>the</strong> exact shape of <strong>the</strong><br />

Fraunhofer l<strong>in</strong>es, <strong>the</strong> <strong>in</strong>strument spectral resolution, <strong>the</strong> view<strong>in</strong>g geometry, and <strong>the</strong> atmospheric and<br />

surface conditions. Moreover, we expect that <strong>the</strong> given numbers for <strong>the</strong> multiple <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong><br />

contribution present an upper threshold, because <strong>the</strong> elastic <strong>scatter<strong>in</strong>g</strong> probability <strong>in</strong>creases when for<br />

example aerosols or a reflect<strong>in</strong>g surface are added (e.g.Stam et al. [2002]). Never<strong>the</strong>less, we predict<br />

that when <strong>the</strong> spectral resolution of future <strong>in</strong>struments which measure backscattered light by planetary<br />

<strong>atmosphere</strong>s improves, <strong>the</strong> need for accurate model<strong>in</strong>g of <strong>the</strong> exact amplitudes and spectral shapes of<br />

fill<strong>in</strong>g-<strong>in</strong> spectra will <strong>in</strong>crease.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!