24.07.2014 Views

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A doubl<strong>in</strong>g-add<strong>in</strong>g method to <strong>in</strong>clude multiple orders of rotational <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> 23<br />

transmission from wavenumber ν j to wavenumber ν i ; <strong>the</strong> next two <strong>in</strong>dices, p and q, describe reflection<br />

or transmission from zenith angle µ q to µ p <strong>in</strong> <strong>the</strong> mth Fourier mode. Evaluation of an operator product<br />

of <strong>the</strong> type R ∗ aR b <strong>in</strong> Eq. (2.11) simplifies to calculat<strong>in</strong>g <strong>the</strong> matrix product<br />

[R a R ∗ b] m ij;pq = [1 + δ 0m]<br />

k∑<br />

max r∑<br />

max<br />

k=k m<strong>in</strong> r=1<br />

∆ν k w r µ r [R a ] m ik;pr [R∗ b] m kj;rq , (2.15)<br />

where summation over all Gaussian po<strong>in</strong>ts r = 1,..,r max and all wavenumber b<strong>in</strong>s k = k m<strong>in</strong> ,...,k max<br />

takes place. The factor π [1 + δ 0m ] <strong>in</strong> Eq. (2.15) arises from <strong>the</strong> <strong>in</strong>tegration over azimuthal angle of<br />

products of cos m[ϕ − ϕ ′ ]-type terms which appear <strong>in</strong> <strong>the</strong> Fourier expansion of Eq. (2.14). Here, δ 0m<br />

is <strong>the</strong> so-called Kronecker-delta.<br />

S<strong>in</strong>ce <strong>the</strong> computation time to calculate a matrix product of <strong>the</strong> type <strong>in</strong> Eq. (2.15) is proportional<br />

to <strong>the</strong> number of wavenumbers used to <strong>the</strong> third power, and s<strong>in</strong>ce <strong>the</strong> accessible computer memory<br />

is limited, this number should be reduced as much as possible to make a numerical implementation<br />

feasible. We propose to evaluate a compact wavenumber grid with only <strong>the</strong> rotational <strong>Raman</strong> l<strong>in</strong>es<br />

which are significant with respect to a certa<strong>in</strong> threshold, for <strong>in</strong>com<strong>in</strong>g sunlight at a given wavenumber<br />

ν ′ <strong>in</strong>. Significant l<strong>in</strong>es are determ<strong>in</strong>ed by convolv<strong>in</strong>g <strong>the</strong> s<strong>in</strong>gle <strong>scatter<strong>in</strong>g</strong> albedo ω(ν;ν ′ ) with itself to<br />

get <strong>the</strong> <strong>scatter<strong>in</strong>g</strong> probability distribution for <strong>the</strong> nth order of <strong>scatter<strong>in</strong>g</strong>:<br />

ω n (ν;ν ′ <strong>in</strong>) =<br />

∫ ∞<br />

0<br />

dν ′′ ω(ν;ν ′′ )ω n−1 (ν ′′ ;ν ′ <strong>in</strong>). (2.16)<br />

In o<strong>the</strong>r words, ω n (ν;ν ′ <strong>in</strong>) describes <strong>the</strong> probability that <strong>in</strong>com<strong>in</strong>g light at wavenumber ν ′ <strong>in</strong> ends up<br />

at a wavenumber ν after n times of <strong>scatter<strong>in</strong>g</strong>. We compare this with <strong>the</strong> correspond<strong>in</strong>g <strong>scatter<strong>in</strong>g</strong><br />

probability of <strong>the</strong> nth order of elastic Rayleigh <strong>scatter<strong>in</strong>g</strong>, ω n ray(ν ′ <strong>in</strong>), which can be <strong>in</strong>terpreted as <strong>the</strong><br />

probability that <strong>scatter<strong>in</strong>g</strong> <strong>in</strong> general takes place. Then, significant l<strong>in</strong>es are def<strong>in</strong>ed to be l<strong>in</strong>es that<br />

satisfy<br />

r(n max ,ν;ν ′ <strong>in</strong>) > ǫ, (2.17)<br />

with<br />

r(n max ,ν;ν ′ <strong>in</strong>) =<br />

n∑<br />

max<br />

n=1<br />

n max<br />

∑<br />

n=1<br />

ω n (ν;ν ′ <strong>in</strong>)<br />

ω n ray(ν ′ <strong>in</strong> ) , (2.18)<br />

where ǫ is a given threshold and n max is <strong>the</strong> maximum order of <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> determ<strong>in</strong>ation<br />

of <strong>the</strong> optimized wavenumber grid. The threshold ǫ and n max should be chosen <strong>in</strong> such a way that<br />

<strong>the</strong>y have little <strong>in</strong>fluence on <strong>the</strong> end result. It is important to realize that fix<strong>in</strong>g n max does not mean<br />

that <strong>scatter<strong>in</strong>g</strong> of <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong> of orders n > n max does not occur; it means that higher order<br />

scattered light can end up <strong>in</strong> <strong>the</strong> <strong>in</strong>correct wavenumber b<strong>in</strong>s, because <strong>the</strong> wavenumber b<strong>in</strong>s associated

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!