24.07.2014 Views

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

18 Chapter 2<br />

N 2 , O 2 , and trace gases like Ar and H 2 O, <strong>in</strong> this spectral region is commonly described by Rayleigh<br />

<strong>scatter<strong>in</strong>g</strong>. This type of <strong>scatter<strong>in</strong>g</strong> is usually expla<strong>in</strong>ed as monochromatic dipole <strong>scatter<strong>in</strong>g</strong> by dielectric<br />

spheres.<br />

Most air molecules do not behave as perfect dielectric spheres, but show an anisotropic polarizability<br />

[Long, 1977]. This anisotropy causes <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong> and makes Rayleigh <strong>scatter<strong>in</strong>g</strong> only<br />

an effective description (see Appendix). Rayleigh <strong>scatter<strong>in</strong>g</strong> namely consists of two components: <strong>the</strong><br />

elastic Cabannes l<strong>in</strong>e and <strong>the</strong> <strong>in</strong>elastic rotational-vibrational <strong>Raman</strong> l<strong>in</strong>es 1 [Young, 1982]. In each<br />

<strong>scatter<strong>in</strong>g</strong> event about 4% of <strong>the</strong> light is scattered <strong>in</strong>elastically, whereas <strong>the</strong> rema<strong>in</strong><strong>in</strong>g 96% is scattered<br />

elastically as Cabannes <strong>scatter<strong>in</strong>g</strong>. The rotational-vibrational <strong>Raman</strong> l<strong>in</strong>e-strengths are weak<br />

compared to <strong>the</strong> pure rotational <strong>Raman</strong> l<strong>in</strong>es and are usually neglected [Burrows et al., 1996, Sioris,<br />

2001]. Under atmospheric conditions, <strong>the</strong> typical spectral distribution width of pure rotational <strong>Raman</strong><br />

<strong>scatter<strong>in</strong>g</strong> is about 400 cm −1 , which corresponds to a width of 3.6 nm at 300 nm.<br />

For <strong>the</strong> simulation of atmospheric radiation measurements with a spectral resolution higher than<br />

<strong>the</strong> spectral <strong>scatter<strong>in</strong>g</strong> width of rotational <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong>, <strong>in</strong>elastic <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> has to be taken<br />

<strong>in</strong>to account. This becomes especially important <strong>in</strong> spectral ranges where <strong>the</strong> <strong>in</strong>tensity changes significantly<br />

with wavelength with<strong>in</strong> <strong>the</strong> spectral <strong>scatter<strong>in</strong>g</strong> width. In this case, light gets effectively<br />

scattered from wavelengths of high <strong>in</strong>tensity toward wavelengths of low <strong>in</strong>tensity. One of <strong>the</strong> consequences<br />

is that Fraunhofer l<strong>in</strong>es <strong>in</strong> <strong>the</strong> solar spectrum are filled due to atmospheric <strong>scatter<strong>in</strong>g</strong> from<br />

<strong>the</strong> l<strong>in</strong>e-w<strong>in</strong>gs to <strong>the</strong> l<strong>in</strong>e-center. Also absorption features, such as <strong>the</strong> ozone Hugg<strong>in</strong>s absorption<br />

structures, are filled due to atmospheric <strong>scatter<strong>in</strong>g</strong>. Both types of fill<strong>in</strong>g-<strong>in</strong> are known as <strong>the</strong> R<strong>in</strong>g<br />

effect [Gra<strong>in</strong>ger and R<strong>in</strong>g, 1962].<br />

Today, several space-borne <strong>in</strong>struments measure reflected sunlight by <strong>the</strong> Earth’s <strong>atmosphere</strong> <strong>in</strong><br />

<strong>the</strong> ultraviolet and visible. In 1995, <strong>the</strong> Global Ozone Monitor<strong>in</strong>g Experiment (GOME) was launched<br />

on board of ESA’s remote sens<strong>in</strong>g satellite ERS-2. This nadir view<strong>in</strong>g spectrometer measures <strong>the</strong><br />

<strong>in</strong>tensity of reflected sunlight between 240 and 780 nm with a spectral resolution of 0.2 nm. In 2002,<br />

<strong>the</strong> Scann<strong>in</strong>g Imag<strong>in</strong>g Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) was<br />

launched on board of ESA’s ENVISAT satellite. SCIAMACHY covers <strong>the</strong> spectral range 240–<br />

2320 nm and scans <strong>the</strong> Earth’s <strong>atmosphere</strong> <strong>in</strong> limb and nadir view<strong>in</strong>g geometry. In <strong>the</strong> ultraviolet<br />

and visible, SCIAMACHY has <strong>the</strong> same spectral resolution as GOME. The Ozone Monitor<strong>in</strong>g Instrument<br />

(OMI) is also a nadir view<strong>in</strong>g spectrometer, which is to be launched on NASA’s EOS-AURA<br />

satellite <strong>in</strong> 2004. OMI measures <strong>in</strong> <strong>the</strong> spectral range 270–500 nm with 0.5 nm resolution. Additionally,<br />

<strong>the</strong> GOME-2 <strong>in</strong>strument will be flown on EUMETSAT’s Metop series, start<strong>in</strong>g with <strong>the</strong> launch<br />

of <strong>the</strong> Metop-1 satellite <strong>in</strong> 2005. GOME-2 is an adaptation of <strong>the</strong> GOME <strong>in</strong>strument with <strong>the</strong> same<br />

spectral coverage and spectral resolution. Due to <strong>the</strong> relatively f<strong>in</strong>e spectral resolution of all <strong>the</strong>se <strong>in</strong>struments,<br />

a proper <strong>in</strong>terpretation of <strong>the</strong> nadir ultraviolet and visible measurements needs an accurate<br />

simulation of atmospheric rotational <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong>.<br />

The first <strong>the</strong>oretical treatment of <strong>the</strong> fill<strong>in</strong>g-<strong>in</strong> of Fraunhofer l<strong>in</strong>es due to rotational <strong>Raman</strong> was pre-<br />

1 In more detail, <strong>the</strong> Cabannes l<strong>in</strong>e consists of <strong>the</strong> elastic Gross l<strong>in</strong>e and <strong>the</strong> Brillou<strong>in</strong> l<strong>in</strong>es, represent<strong>in</strong>g translational<br />

<strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong>. Due to <strong>the</strong> small spectral <strong>scatter<strong>in</strong>g</strong> width of <strong>the</strong> Brillou<strong>in</strong> l<strong>in</strong>es, both l<strong>in</strong>e types can be comb<strong>in</strong>ed <strong>in</strong>to<br />

one Cabannes l<strong>in</strong>e for most measurement simulations. Broaden<strong>in</strong>g of <strong>the</strong> <strong>Raman</strong> l<strong>in</strong>es can also be neglected [Burrows<br />

et al., 1996].

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!