24.07.2014 Views

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

74 Chapter 3<br />

where S l is <strong>the</strong> expansion coefficient matrix and P l m is <strong>the</strong> generalized spherical function matrix<br />

[Hovenier and van der Mee, 1983, de Haan et al., 1987]. For Rayleigh, Cabannes and rotational<br />

<strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> <strong>the</strong>se coefficient matrices can be determ<strong>in</strong>ed straightforwardly [Stam et al., 2002].<br />

In <strong>the</strong> correspond<strong>in</strong>g Fourier expansion of <strong>the</strong> <strong>in</strong>tensity field<br />

I(z,Ω) =<br />

∞∑<br />

(2 − δ m0 ) [ B +m (ϕ 0 − ϕ)I +m (z,µ) + B −m (ϕ 0 − ϕ)I −m (z,µ) ] , (3.86)<br />

m=0<br />

two types of Fourier coefficient vectors are needed<br />

I +m (z,µ) = 1<br />

2π<br />

I −m (z,µ) = 1<br />

2π<br />

∫ 2π<br />

0<br />

∫ 2π<br />

0<br />

dϕ B +m (ϕ 0 − ϕ) I(z,Ω) ,<br />

dϕ B −m (ϕ 0 − ϕ) I(z,Ω). (3.87)<br />

An expansion analogous to (3.86) holds for <strong>the</strong> radiation source S. The Fourier coefficients of <strong>the</strong><br />

solar source <strong>in</strong> Eq. (3.10) are given by<br />

S +m (z,µ,λ) = 1<br />

2π µ 0δ(z−z top )δ(µ+µ 0 )F 0 (λ) ,<br />

S −m (z,µ,λ) = [0, 0, 0, 0] T . (3.88)<br />

On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> Fourier coefficients of <strong>the</strong> source S ps <strong>in</strong> Eq. (3.44), which is def<strong>in</strong>ed by <strong>the</strong><br />

response function R i <strong>in</strong> Eq. (3.15), are<br />

S +m<br />

Ψ (z,µ,λ) = 1<br />

2π δ(z−z top)δ(µ+µ v )e i ,<br />

S −m<br />

Ψ (z,µ,λ) = [0, 0, 0, 0]T . (3.89)<br />

for i = 1, 2, but<br />

S +m<br />

Ψ (z,µ,λ) = [0, 0, 0, 0]T ,<br />

S −m<br />

Ψ (z,µ,λ) = 1<br />

2π δ(z−z top)δ(µ+µ v )e i , (3.90)<br />

for i = 3, 4. Hence, due to <strong>the</strong> Fourier coefficients of <strong>the</strong> solar source <strong>in</strong> Eq. (3.88) <strong>the</strong> Fourier<br />

coefficients I −m of <strong>the</strong> forward <strong>in</strong>tensity field are zero. For <strong>the</strong> adjo<strong>in</strong>t fields <strong>the</strong> coefficients Ψ −m<br />

are zero for <strong>the</strong> response function R i with i = 1, 2, while for <strong>the</strong> response function R i with i = 3, 4<br />

<strong>the</strong> coefficients Ψ +m are zero. This simplification is possible due to <strong>the</strong> special form of <strong>the</strong> Fourier<br />

expansion <strong>in</strong> Eqs. (3.81) and (3.86). For <strong>the</strong> types of radiation sources considered <strong>in</strong> this paper, this<br />

reduces significantly <strong>the</strong> numerical efforts required for solv<strong>in</strong>g <strong>the</strong> radiative transfer equation.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!