24.07.2014 Views

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A doubl<strong>in</strong>g-add<strong>in</strong>g method to <strong>in</strong>clude multiple orders of rotational <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> 21<br />

where ∆τ ′ ≡ ∆τ(ν ′ ) is <strong>the</strong> optical thickness of <strong>the</strong> model <strong>atmosphere</strong> layer at wavenumber ν ′ , and<br />

δ represents Dirac’s delta function. Analogous to Eq. (2.3), <strong>the</strong> transmission operator for <strong>the</strong> diffuse<br />

light, T dif , is def<strong>in</strong>ed with <strong>the</strong> <strong>in</strong>tegral kernel T dif .<br />

Let us assume that <strong>the</strong> reflection and transmission properties are known for two separate layers a<br />

and b. Then, with <strong>the</strong> def<strong>in</strong>itions of <strong>the</strong> reflection and transmission operator <strong>in</strong> Eqs. (2.2) and (2.3),<br />

<strong>the</strong> reflection and transmission properties of <strong>the</strong> comb<strong>in</strong>ed layer ab are given by <strong>the</strong> add<strong>in</strong>g equations.<br />

These can be adopted <strong>in</strong> a straightforward manner from <strong>the</strong> correspond<strong>in</strong>g equations <strong>in</strong>clud<strong>in</strong>g only<br />

elastic <strong>scatter<strong>in</strong>g</strong> (e.g. Lacis and Hansen [1974]), viz.<br />

R ab = R a + T 0,a U + T ∗ dif,a U ,<br />

R ∗ ab = R ∗ b + T 0,b U∗ + T dif,b U ∗ ,<br />

T dif,ab = T dif,b T 0,a + T 0,b D + T dif,b D ,<br />

T ∗ dif,ab = T ∗ dif,a T 0,b + T 0,aD ∗ + T ∗ dif,a D∗ .<br />

The auxiliary operators<br />

D = T dif,a + ST 0,a + ST dif,a ,<br />

D ∗ = T ∗ dif,b + S∗ T 0,b + S ∗ T ∗ dif,b ,<br />

U = R b T 0,a + R b D ,<br />

U ∗ = R ∗ aT 0,b + R ∗ aD ∗ ,<br />

describe <strong>the</strong> transmission and reflection properties at <strong>the</strong> layer <strong>in</strong>terface between a and b. Here, <strong>the</strong><br />

operators<br />

S =<br />

∑ ∞ Q n ,<br />

S ∗ =<br />

n=1<br />

∑ ∞ (2.8)<br />

Q ∗ n ,<br />

n=1<br />

describe multiple reflections of light between <strong>the</strong> layers with<br />

and<br />

Q n = Q 1 Q n−1 ,<br />

Q ∗ n = Q ∗ 1 Q ∗ n−1 ,<br />

Q 1 = R ∗ aR b ,<br />

Q ∗ 1 = R b R ∗ a .<br />

(2.6)<br />

(2.7)<br />

(2.9)<br />

(2.10)<br />

At first glance, <strong>the</strong> operator products <strong>in</strong> Eqs.(2.6), (2.7), (2.9) and (2.10) might look simple, but<br />

each product <strong>in</strong>volves an <strong>in</strong>tegration over all possible angles and wavenumbers. For example, <strong>the</strong><br />

<strong>in</strong>tegral kernel for R ∗ aR b is calculated as<br />

R a R ∗ b (ν,µ,ϕ;ν′ ,µ ′ ,ϕ ′ ) =<br />

1<br />

π<br />

∫ ∞<br />

0<br />

∫ 2π ∫ 1<br />

dν ′′ dϕ ′′ dµ ′′ µ ′′ R a (ν,µ,ϕ;ν ′′ ,µ ′′ ,ϕ ′′ )Rb(ν ∗ ′′ ,µ ′′ ,ϕ ′′ ;ν ′ ,µ ′ ,ϕ ′ ).<br />

0<br />

0<br />

(2.11)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!